Цитология строение клетки растений

Строение клетки. Клеточные органоиды — урок. Биология, Общие биологические закономерности (9–11 класс)

Цитология строение клетки растений

Наука, изучающая строение и функции клеток, называется цитология.

Клетка — элементарная структурная и функциональная единица живого.

Клетки, несмотря на свои малые размеры, устроены очень сложно. Внутреннее полужидкое содержимое клетки получило название цитоплазмы.

Цитоплазма является внутренней средой клетки, где проходят различные процессы и расположены компоненты клетки — органеллы (органоиды).

Клеточное ядро — это важнейшая часть клетки. От цитоплазмы ядро отделено оболочкой, состоящей из двух мембран.

В оболочке ядра имеются многочисленные поры, они нужны для того, чтобы различные вещества могли попадать из цитоплазмы в ядро и наоборот.

Внутреннее содержимое ядра получило название кариоплазмы, или ядерного сока. В ядерном соке расположены хроматин и ядрышко.

Хроматин представляет собой нити ДНК. Если клетка начинает делиться, то нити хроматина плотно накручиваются спиралью на особые белки, как нитки на катушку. Такие плотные образования хорошо видны в микроскоп и называются хромосомами.

Ядро содержит генетическую информацию и управляет жизнедеятельностью клетки.

Ядрышко представляет собой плотное округлое тело внутри ядра. Обычно в ядре клетки бывает от одного до семи ядрышек. Они хорошо видны между делениями клетки, а во время деления — разрушаются.

  Функция ядрышек — синтез РНК и белков, из которых формируются особые органоиды — рибосомы.

Рибосомы участвуют в биосинтезе белка. В цитоплазме рибосомы чаще всего расположены на шероховатой эндоплазматической сети.

Реже они свободно взвешены в цитоплазме клетки.

Эндоплазматическая сеть (ЭПС) участвует в синтезе белков клетки и транспортировке веществ внутри клетки.

Значительная часть синтезируемых клеткой веществ (белков, жиров, углеводов) не расходуется сразу, а по каналам ЭПС поступает для хранения в особые полости, уложенные своеобразными стопками, «цистернами», и отграниченные от цитоплазмы мембраной.

Эти полости получили название аппарат (комплекс) Гольджи. Чаще всего цистерны аппарата Гольджи расположены вблизи от ядра клетки.Аппарат Гольджи принимает участие в преобразовании белков клетки и синтезирует лизосомы — пищеварительные органеллы клетки.

Лизосомы представляют собой пищеварительные ферменты, «упаковываются» в мембранные пузырьки, отпочковываются и разносятся по цитоплазме.В комплексе Гольджи также накапливаются вещества, которые клетка синтезирует для нужд всего организма и которые выводятся из клетки наружу.

Митохондрии — энергетические органоиды клеток. Они преобразуют питательные вещества в энергию (АТФ), участвуют в дыхании клетки.

Митохондрии покрыты двумя мембранами: наружная мембрана гладкая, а внутренняя имеет многочисленные складки и выступы — кристы.

В мембрану крист встроены ферменты, синтезирующие за счёт энергии питательных веществ, поглощённых клеткой, молекулы аденозинтрифосфата (АТФ). АТФ — это универсальный источник энергии для всех процессов, происходящих в клетке.Количество митохондрий в клетках различных живых существ и тканей неодинаково. Например, в сперматозоидах может быть всего одна митохондрия.

Зато в клетках тканей, где велики энергетические затраты (в клетках летательных мышц у птиц, в клетках печени), этих органоидов бывает до нескольких тысяч. Митохондрии имеют собственную ДНК и могут самостоятельно размножаться (перед делением клетки число митохондрий в ней возрастает так, чтобы их хватило на две клетки).

Митохондрии содержатся во всех эукариотических клетках, а вот в прокариотических клетках их нет. Этот факт, а также наличие в митохондриях ДНК позволило учёным выдвинуть гипотезу о том, что предки митохондрий когда-то были свободноживущими существами, напоминающими бактерии. Со временем они поселились в клетках других организмов, возможно, паразитируя в них.

А затем за многие миллионы лет превратились в важнейшие органоиды, без которых ни одна эукариотическая клетка не может существовать.

Чтобы клетка представляла собой единую систему, необходимо, чтобы все её части (цитоплазма, ядро, органоиды) удерживались вместе.

Для этого в процессе эволюции развилась плазматическая мембрана, которая, окружая каждую клетку, отделяет её от внешней среды.

Наружная мембрана защищает внутреннее содержимое клетки — цитоплазму и ядро — от повреждений, поддерживает постоянную форму клетки, обеспечивает связь клеток между собой, избирательно пропускает внутрь клетки необходимые вещества и выводит из клетки продукты обмена.

Строение мембраны одинаково у всех клеток. Основу мембраны составляет двойной слой молекул липидов, в котором расположены многочисленные молекулы белков. Некоторые белки находятся на поверхности липидного слоя, другие — пронизывают оба слоя липидов насквозь.

 

Специальные белки образуют тончайшие каналы, по которым внутрь клетки или из неё могут проходить ионы калия, натрия, кальция и некоторые другие ионы, имеющие маленький диаметр. Однако более крупные частицы (молекулы пищевых веществ — белки, углеводы, липиды) через мембранные каналы пройти не могут и попадают в клетку при помощи фагоцитоза или пиноцитоза:

  • В том месте, где пищевая частица прикасается к наружной мембране клетки, образуется впячивание, и частица попадает внутрь клетки, окружённая мембраной. Этот процесс называется фагоцитозом (клетки растений поверх наружной клеточной мембраны покрыты плотным слоем клетчатки (клеточной оболочкой) и не могут захватывать вещества при помощи фагоцитоза).
  • Пиноцитоз отличается от фагоцитоза лишь тем, что в этом случае впячивание наружной мембраны захватывает не твёрдые частицы, а капельки жидкости с растворёнными в ней веществами. Это один из основных механизмов проникновения веществ в клетку.

Когда в клетку путём фагоцитоза или пиноцитоза попадают различные питательные вещества, их необходимо переварить (т. е. белки должны разрушиться до отдельных аминокислот, полисахариды — до молекул глюкозы или фруктозы, липиды — до глицерина и жирных кислот). Чтобы внутриклеточное переваривание стало возможным, фагоцитарный или пиноцитарный пузырёк должен слиться с лизосомой. 

Источники:

Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. 9 класс // ДРОФА.
Каменский А. А., Криксунов Е. А., Пасечник В. В. Биология. Общая биология (базовый уровень) 10–11 класс // ДРОФА.

Лернер Г. И. Биология: Полный справочник для подготовки к ЕГЭ: АСТ, Астрель.

https://infourok.ru/material.html?mid=30020

http://mognovse.ru/mogno/669/668818/668818_html_m66d1dbb3.jpg

Источник: https://www.yaklass.ru/p/biologia/obschie-biologicheskie-zakonomernosti/tcitologiia-nauka-o-kletke-17330/kletochnaia-teoriia-organoidy-kletki-ikh-funktcii-16038/re-e082c163-191c-4625-8cff-ef6225d2e0dd

Цитология и ее методология

Цитология строение клетки растений

Цитология (греч. cytos — клетка + logos — наука) – наука о строении и жизнедеятельности клетки. На данный момент нам кажется очевидным, что растения, грибы и животные состоят из клеток, однако раньше об этом и не догадывались.

Цитология начала свой путь развития относительно недавно, в этой статье мы обсудим клеточную теорию и методы, которые используются в цитологии для изучения клеток (методологию).

Клеточная теория

Создание и развитие клеточной теории стало возможным после изобретения микроскопа в 1590 году голландским мастером по изготовлению очков – Захарием Янсеном. Первый микроскоп мог увеличивать изучаемый объект до 3-9 раз.

В 1665 году Роберт Гук, используя микроскоп собственного изобретения, смог различить ячеистые структуры пробки ветки бузины. Эти ячеистые структуры напомнили Роберту Гуку монашеские кельи, он ввел термин клетка (от лат. сеllа — комната, келья).

На самом деле Роберт Гук увидел не живые клетки, как он предполагал, а оставшиеся от них плотные клеточные стенки, которые и представляли собой ячеистую структуру.

В 70-х годах XVII века нидерландский натуралист Антони ван Левенгук открыл целый мир, невидимый невооруженным глазом. Он увидел в микроскопе простейшие организмы: инфузорий, сперматозоидов, а также дрожжи, бактерии, эпидермис кожи.

В течение 50 лет он отсылал результаты своих наблюдений в Лондонское королевское общество. Поначалу они были встречены со скептицизмом, но когда комиссия ученых лично во всем убедилась и подтвердила подлинность его исследований, Антони ван Левенгук был избран действительным членом Лондонского королевского общества.

В последующее время было много описаний самых разных клеток, однако обобщить накопленный материал оказалось не легкой задачей. С ней в 1839-1840 годах справились немецкий ботаник Маттиас Шлейден и немецкий зоолог Теодор Шванн.

Изучая строение растений и животных, Шлейден и Шванн независимо друг от друга пришли к одному и тому же выводу: все организмы, как растительные, так и животные, состоят из клеток, сходных по строению. Они постулировали, что все живое состоит из клеток.

В 1839-1840 годах возникла клеточная теория Шлейдена и Шванна, основные положения которой:

  • Все организмы состоят из клеток
  • Клетка – мельчайшая структурная единица жизни
  • Образование новых клеток – основополагающий способ роста и развития растений и животных
  • Организм представляет собой сумму образующих его клеток

Допустили ли Шлейден и Шванн ошибки? Да, они были. Ошибочно предположение о том, что клетка может образоваться из неклеточного вещества.

Важное дополнение в 1855 в клеточную теорию внес Рудольф Вирхов, который утверждал, что любая клетка может образоваться только путем деления материнской клетки.

Какие же положения включает в себя современная клеточная теория? Приступим к их изучению:

  • Клетка является структурной, функциональной и генетической единицей живого
  • Клетки растений и животных сходны между собой по строению и химическому составу
  • Клетка образуется только путем деления материнской клетки
  • Клетки у всех организмов окружены мембраной (имеют мембранное строение)
  • Ядро клетки – ее главный регуляторный органоид
  • Клеточное строение растений, животных и грибов свидетельствует о едином происхождении всего живого
  • В многоклеточном организме клетки подразделяются (дифференцируются) по строению и функции. Они объединяются в ткани, органы и системы органов.
  • Клетка – элементарная, открытая и живая система, способная к самообновлению, воспроизведению и саморегуляции

XX век несомненно стал веком биологических наук: цитологии, генетики. Это произошло во многом благодаря клеточной теории.

Я хочу поделиться с вами моим искренним восхищением новой жизни. Вдумайтесь – мы ведь когда-то с вами были всего одной единственной клеткой, зиготой! Как в одной клетке природе удалось уместить столько всего: кожу, мышцы, нервную систему, пищеварительный тракт? Мы приоткроем завесу этой тайну в статьях по генетике и эмбриологии, и, тем не менее, мое восхищение этим безгранично.

Наши клетки рождаются и умирают: эпителий кишечника обновляется каждые 5 дней полностью, при удалении 70% печени оставшиеся клетки способны восстановить всю структуру этого органа, каждые 30 дней мы получаем новую кожу. При этом наше сознание и память остаются с нами. Мы – чудо, настоящее чудо природы, созданное из одной единственной клетки.

Микроскопия

Микроскопия – важнейший метод цитологии, в ходе которого объекты рассматриваются при помощи микроскопа. Его оптическая система состоит из двух основных элементов: объектива и окуляра, закрепленных в тубусе. Микропрепарат (срез тканей) располагается на предметном столике, расстояние от которого до объектива регулируется с помощью винта (винтов).

Чтобы посчитать увеличительную способность микроскопа следует умножить увеличение окуляра на увеличение объектива. К примеру, если окуляр увеличивает объект в 20 раз, а объектив – в 10, то суммарное увеличение будет в 200 раз.

Некоторое внимание уделим направлениям в биологии, которые необходимо знать на современном этапе технического прогресса.

Биоинженерия

Биоинженерия – направление науки и техники, развивающее применение инженерных принципов в биологии и медицине. В рамках биоинженерии происходят попытки (и довольно успешные) выращивания тканей и создание искусственных органов, протезов.

То есть биоинженерия занимается преимущественно технической частью. Медицинское направление в биоинженерии ищет замену органам и тканям человека, которые утратили свою функциональную активность и требуют “замены”.

Биотехнология

Биотехнология – направление биологии, изучающее возможность применения живых организмов или продуктов их жизнедеятельности для решения технологических задач. В биотехнологии путем генной инженерии создают организмы с заданным набором свойств.

В рамках биотехнологии происходит получение антибиотиков – продуктов жизнедеятельности бактерий, очищение водоемов с помощью моллюсков, увеличение плодородия почвы с помощью дождевых червей, клонирование организмов.

Это разительно отличается от задач биоинженерии, хотя безусловно, эти дисциплины смежные. Все-таки в биотехнологии происходит большее вторжение в живой мир, по сути человек выступает эксплуататором, достигая с помощью животных, растений и грибов своих целей. Человек проводит естественный отбор, отделяя особей, которые продолжат род, от других, “менее перспективных”.

В рамках биотехнологии выделяются следующие направления:

  • Генная инженерия
  • Представляет собой совокупность методов и технологий, которые приводят к получению рекомбинантных РНК и ДНК, выделению генов из клеток и внедрения их в другие организмы.Изменив молекулу ДНК или РНК, человек добивается своей цели: клетка начинает синтезировать с нее белок. Он то и нужен человеку, такие продукты жизнедеятельности активно используются в медицине, к примеру, при изготовлении антибиотиков.В ходе генной инженерии был получены:

    • Сорт кукурузы, устойчивый к действию насекомых-вредителей
    • Бактерии, продуктом жизнедеятельности которых является человеческий инсулин, используемый в дальнейшем как лекарство
    • Культура клеток, вырабатывающих гормон человека – эритропоэтин, также используемый в лечебных целях
  • Клеточная инженерия
  • Представляет собой совокупность методов и технологий, используемых для конструирования новых клеток. В основе лежит идея культивирования клеток тканей вне организма.

    С помощью клеточной инженерии возможно бесполое размножение ценных форм растений. Часто получаются, так называемые, гибридные клетки, которые сочетают свойства, к примеру, раковых клеток и лимфоцитов, в результате становится возможно быстрое получение антител.

Источник: https://studarium.ru/article/118

Цитология строение клетки анатомия

Цитология строение клетки растений

Все живые организмы состоят из клеток – из одной (одноклеточные организмы) или многих (многоклеточные).

Предметом цитологии является клетка многоклеточных грибов, растений и животных, а также одноклеточные организмы (бактерии, одноклеточные грибы и водоросли, простейшие).

Цитология занимается изучением строения, химического состава и функций клеток, функций внутриклеточных структур, размножения и развития клеток, приспособление клеток к условиям внешней среды.

Современная цитология – комплексная наука. Она очень тесно связаны с другими биологическими науками: физиологией, ботаникой, зоологией, физиологией, эволюционным учением.

Существует общая и частная цитология.

Предметом исследования общей цитологии являются общие для большинства клеток элементы: их структура, функции, процессы метаболизма, реакция на повреждения и патологические изменения, приспособление к окружающим условиям.

В частной цитологии исследует особенности каждого типа клеток в зависимости от их специализации (многоклеточные организмы) или эволюционной адаптации к внешней среде (бактерии).

Чёткие грани между цитологией, биохимией, биологией развития, молекулярной биологией и молекулярной биофизикой стёрлись благодаря новым методам изучения компонентов клетки, развитию и усовершенствованию исследований цитохимии, особенно ферментов, использованию при изучении процессов синтеза макромолекул клетки радиоактивных изотопов, внедрению методов электронной цитохимии, применению для изучения локализации индивидуальных белков клетки с помощью люминесцентного анализа меченых флюорохромами антител, методам препаративного и аналитического цинтрифугирования.

Современная цитология из суто морфологической науки смогла развиться в экспериментальную дисциплину, изучающую основные принципы деятельности клетки и, соответственно, основы жизни организмов.

При диагностике заболеваний человека и животных существенное значение имеют именно цитологические исследования.

Благодаря разработке Б.Гердоном методов пересадки ядер в клетки, соматической гибридизации клеток Х. Харрисом, Дж.Барски и Б. Эфрусси стало возможным изучение закономерностей реактивации генов, определение локализации многих генов в хромосомах человека.

Стало также возможным приблизиться к решению ряда практических заданий медицины и народного хозяйства (создание новых сельскохозяйственных культур). Методом гибридизации клеток создано технологию получения стационарных антител гибридных клеток, вырабатывающих специфические антитела (моноклональные антитела).

  • Цитоморфологии, которая изучает особенности структурной организации клетки, основными методами исследования которой являются различные способы микроскопии, как фиксированной (светооптическая, электронная, поляризационная), так и живой клетки (темнопольний конденсор, фазово-контрастная и люминесцентная микроскопия);
  • Цитофизиологии, которая изучает жизнедеятельность клетки как единой живой системы, а также функционирование и взаимодействие её внутренних структур; для решения этих заданий используют различные экспериментальные приёмы вместе с методами культуры клеток и тканей, микрокиносъёмки;*
  • Цитохимии, которая исследует молекулярную организацию клетки и химические изменения во время процессов обмена веществ и функционирования клетк. Проводят цитохимические исследования светомикроскопическим и электронно-микроскопическим методами, методами ультрафиолетовой и интерференционной микроскопии, цитофотометрии, фракционного центрифугирования.
  • Цитогенетики, которая изучает функциональную и структурную и организацию хромосом эукариотов;
  • Цитоэкологии, которая исследует реакции клетки на влияние факторов окружающей среды и механизмы адаптации к ним;
  • Цитопатологии, которая изучает патологические процессы в клетке.*

Наряду с традиционными направлениями цитологии развиваются и новые, такие как цитопатология вирусов, ультраструктурная патология клеток, цитофармакология, онкологическая цитология и др.

Цитология преподаётся как самостоятельный раздел в курсе гистологии и биологии в медицинских и других высших учебных заведениях.

2. Растительная животная

РАСТИТЕЛЬНАЯ

ЖИВОТНАЯ

ЦИТОЛОГИЯ -наука о клетке.

•Изучает строение и функции клеток, их связи и


отношения в органах и тканях у многоклеточных

организмов, а также одноклеточные организмы.

•Изучение клеточного строения организмов было

начато микроскопистами 17 в. (Р. Гук, М. Мальпиги,

А. Левенгук);

•в 19 в. была создана единая для всего органического

мира клеточная теория (Т. Шванн, 1839)

ГУК Роберт

английский естествоиспытатель, разносторонний

ученый и экспериментатор, архитектор. Открыл

(1660) закон, названный его именем. Высказал

гипотезу тяготения. Сторонник волновой теории


света. Улучшил и изобрел многие приборы,

установил (совместно с Х. Гюйгенсом) постоянные

точки термометра. Усовершенствовал микроскоп и

установил клеточное строение тканей, ввел термин

«клетка».

История развития учения о клетке

Цитология относится к молодым биологическим наукам, её возраст – около 100 лет. А возраст термина «клетка» — более 300 лет.

История изучения клетки связана с именами таких учёных, как Роберт Гук (впервые применил микроскоп для исследования тканей и на срезе пробки и сердцевины бузины увидел ячейки, которые назвал клетками), Антони ван Левенгук (впервые увидел клетки при увеличении в 270 раз и открыл одноклеточные организмы), Матиас Шлейден и Теодор Шванн (они стали творцами клеточной теории).

Клеточная теория получила дальнейшее развитие в работах учёных второй половины ХІХ столетия. Было открыто деление клетки и сформулировано положение о том, что каждая новая клетка образуется от такой же начальной клетки в результате её деления (Рудольф Вирхов, 1858).

Академик Российской Академии наук Карл Бер открыл яйцеклетку млекопитающих и установил, что все многочисленные организмы начинают своё развитие из одной клетки и этой клеткой является зигота. Открытие К.

После работ Роберта Гука микроскоп начали широко использовать для научных исследований в биологии.

Исторически развитие цитологии тесно связано с созданием микроскопа и его усовершенствованием, развитием гистологических методов исследования.

В ХVII ст. наблюдения Р. Гука подтвердились и были развиты М. Мальпиги, Н. Грю, А. Левенгуком.

В процессе научно-технической революции середины ХХ ст. цитология бурно развивалась и ряд её представлений были пересмотрены.

Электронная микроскопия дала возможность изучить строение и много в чём раскрыть функции уже известных ранеее органоидов клетки. Связаны эти открытия с именами К. Портера, Дж. Пелейда, Х. Риса, В. Бернхарда, К. де Дюва и других известных учёных.

В результате изучения ультраструктуры клетки весь живой органический мир был разделён на прокариот и эукариот. Исследования молекулярной биологии показали единство для всех организмов (включая вирусы) механизмов синтеза белка и генетического кода.

6. Органоид —

Органоид постоянные специализированные структуры в клетках

животных и растений. Каждый органоид осуществляет

определённые функции, жизненно необходимые для

клетки.

Лизосомы

Оболочка

Клеточный

центр

Ядро

Цитоплазма


Митохондрия

Рибосома

Комплекс Гольджи

Оболочка

Ядерный сок

Ядрышко


Хромосомы

Оболочка ядра

Двухслойная пористая мембрана,

образующая комплекс с остальными

мембранами клетки.

-Отделяет ядро от цитоплазмы.

— На оболочке находится множество

пор, через которые поступают и


выделяются белки, жиры, углеводы,

нуклеиновые кислоты, вода, ионы…

Оболочка ядра

Ядерный сок

Ядерный сок

Находится под ядерной оболочкой.

Функция

Отделяет ядро от цитоплазмы.

Строение


Коллоидный раствор органических и

неорганических веществ

Ядерный сок

Ядрышко

Органоид ядра клетки, размером от 1 до 10

мкм. По форме он круглый.


В состав ядрышка входят РНК и белки

Функция

В ядрышке происходит синтез РНК и

формирование рибосом.

Ядрышко

12. Хромосомы

Хромосомы (греч. chrōma цвет,

окраска sōma тело) — основные

структурно-функциональные

элементы клеточного ядра,

содержащие гены.

Название«хромосомы» обусловлено

их способностью интенсивно

окрашиваться основными


красителями во время деления

клетки.

Функция

В хранении наследственной

информации.

Цитоплазма

Отграниченная от внешней среды клетки

полужидкая среда, представляющая собой

коллоидный раствор различных солей и


органических веществ

Она объединяет в одно целое ядро и все

органоиды, обеспечивает их взаимодействие.

Цитоплазма

Митохондрия

Рибосома

Мельчайшие органоиды клетки диаметром 20нм.

Состоят из 2-х неравных субъединиц: большой и


малой. В состав рибосом входят рРНК и белки.

Располагаются же они на мембранах ЭПС и в

цитоплазме. Синтезируются в ядрышке. Объединяются

вдоль иРНК в цепочки, образуя полисомы

В рибосомах синтезируются все необходимые клетке


белки.

Митохондрия

Органоид клетки, размером от 0,2 до 0,3 мкм. Находится она в

цитоплазме клетки. По форме она палочковидная, округлая,

овальная. Количество митохондрий в клетке неодинаково.

Двухмембранный органоид. Наружная мембрана гладкая, а

внутренняя образует многочисленные складки — кристы.

Внутри заполнена матриксом, в котором содержатся молекулы


ДНК, РНК, рибосомы

Функция

В митохондриях синтезируется АТФ. Не редко их называют

«Силовые станции клетки».

16. Эндоплазматическая сеть

Система мембран, образующих

канальцы, цистерны,трубочки.


Строение мембран сходно с

наружной мембраной и образует

с ней единую сеть

Различают шероховатую (на её

мембранах есть рибосомы) и

гладкую ЭПС


Синтез белка на рибосомах

Транспорт веществ

Участие в синтезе липидов

Плазматическая

мембрана


Плазматическая мембрана отделяет клетку и ее

содержимое от окружающей среды. Мембрана

образована двумя слоями липидов, а белковые

молекулы пронизывают толщу мембраны.

Основная функция плазматической мембраны


транспортная. Она обеспечивает поступление

питательных веществ в клетку и выведение из нее

продуктов обмена.

Важное свойство мембраны — избирательная

проницаемость, или полупроницаемость,

позволяет клетке взаимодействовать с


окружающей средой: в нее поступают и вы водятся

из нее лишь определенные вещества. Мелкие

молекулы воды и некоторых других веществ

проникают в клетку путем диффузии, частично

через поры в мембране.

Фагоцитоз

Захват плазматической

мембраной твёрдых частиц

и впячивание их


внутрь клетки

пиноцитоз

Впячивание мембраны

внутрь клетки в виде

тонкого канальца

в который попадает

жидкость

Комплекс Гольджи


Органоид клетки, названный так по имени итальянского

ученого К. Гольджи, который впервые увидел его в

цитоплазме нервных клеток (1898) и обозначил как сетчатый

аппарат. Сейчас комплекс Гольджи обнаружен во всех

клетках растительных и животных организмов. Форма и


размеры его различны.

Система уплощенных цистерн, ограниченных двойными

мембранами, образующих по краям пузырьки, входит в

единую мембранную систему клетки.

Функция

К нему транспортируются продукты синтетической

деятельности: клетки, жиры, углеводы и в нём

накапливаются, а уже потом либо поступают в цитоплазму,

либо наружу из клетки

20. Лизосомы

Самые мелкие одномембранные

органоиды,содержат до 60

гидролитических ферментов.

Образуется в комплексе

Гольджи.

Пищеварительная –

обеспечивает переваривание

органических веществ,


попавших в клетку при

фагоцитозе и пиноцитозе

При голодании могут

участвовать в растворении

органоидов, клеток и частей

организма

21. Клеточный центр

Органоид немембранного

строения, состоящий из двух


центриолей, расположенных

перпендикулярно друг другу.

Каждая центриоль имеет вид

полого цилиндра, стенка которого

образована из 9 пар микротрубочек

Участвуют в делении клеток,


образуя веретено деления

• Общая биология . Базовый уровень. Учебник для 10-11 классов. Под. Ред. Д.К.

Беляева. М., «Просвещение», 2012 г.

• Медников Б.М. Биология: Формы и уровни жизни. М., «Просвещение», 2006 г.

• Иноземцева Н.А. Клетка – структурная единица живого. Ж «Биология в школе»

№№ 2-5, 2003 г.

Виртуальная школа Кирилла и Мефодия «Уроки биологии.»


www.km.ru/education — учебные материалы и словари на сайте «Кирилл и Мефодий»

Источник: https://kono-pizza.ru/tsitologiya/tsitologiya-stroenie-kletki-anatomiya/

Консультация доктора
Добавить комментарий