Каковы цитологические основы единообразия гибридов первого поколения

Каковы цитологические основы единообразия гибридов первого поколения

Каковы цитологические основы единообразия гибридов первого поколения

При Дигибридном скрещивании

    изучается два признака, например, «белая короткая шерсть»; две пары (альтернативных) генов, например, AaBb x AAbb.

При дигибридном скрещивании гены А и В могут наследоваться Независимо либо сцепленно.

Если гены А и В находятся в

    разных хромосомах; разных парах хромосом; негомологичных хромосомах; разных парах негомологичных хромосом (все это одно и то же);

То они наследуются независимо, согласно III закону Менделя (закону независимого наследования): «Расщепление по каждой паре признаков происходит независимо от других пар признаков».

Цитологической основой независимого наследования является независимое расхождение хромосом в анафазе I мейоза.

Расщепления, характерные для независимого наследования при дигибридном скрещивании

2) Расщепление 9:3:3:1 – скрещивали двух дигетерозигот АаBb х АаBb (третий закон Менделя).

3) Расщепление 1:1:1:1 – скрещивали дигетерозиготу и рецессивную гомозиготу АаBb х ааbb (анализирующее скрещивание).

Если гены А и В расположены в

    одной хромосоме; одной паре хромосом; одной паре гомологичных хромосом;

То они не смогут разойтись независимо, происходит сцепленное наследование согласно закону сцепления Моргана: «Гены, расположенные в одной хромосоме, наследуются совместно».

Все гены, находящиеся в одной хромосоме, образуют группу сцепления. Количество групп сцепления равняется количеству хромосом в гаплоидном наборе (количеству пар гомологичных хромосом).

Какова цитологические основы единообразия гибридов первого поколения и расщепления признаков во втором поколении при дигибридном скрещивании?

    Попроси больше объяснений Следить Отметить нарушение

Stiqq 26.02.2013

· Обуч. Сформировать у учащихся представление о сцепленном наследовании, группах сцепления, генетическом картировании.

· Развив. Научить школьников объяснять причины сцепленного наследования генов, а так же — нарушения сцепления между ними, которое происходит в процессе первого деления мейоза.

· Воспит. Убедить старшеклассников в том, что генетическое картирование дает возможность установить истинное местоположение (локализацию) отдельных генов в хромосоме, а затем — воздействовать на материальную основу наследственности.

Орг. момент. План урока.

Методы контроля знаний.

1 часть – письменная.

От скрещивания двух сортов земляники, один из которых имеет усы и красные ягоды, а у второго ягоды белые и усы отсутствуют, растения первого поколения имеют усы и белые ягоды. Можно ли вывести сорт с розовыми ягодами и безусый?

У флоксов белая окраска цветков определяется геном W, кремовая — w ; плоский венчик — S, воронковидный — s. Растение с белыми воронковидными цветками скрещено с растением, имеющим кремовые плоские цветки. Какое потомство можно ожидать в результате скрещивания?

У томатов красная окраска плода определяется доминантным геном R, желтая — r ; нормальный рост растения — D, карликовый — d. Имеются сорта желто-плодный нормальный и красно-плодный карликовый.

Как с этим исходным материалом целесообразнее получить гомозиготные формы: красно-полодную нормальную и желто-плодную карликовую? Как получить легче?

Черные морские свинки с курчавой шерстью при скрещивании друг с другом дали двух потомков — курчавого белого и гладкого черного. Какое потомство можно ожидать в дальнейшем от этих свинок?

2 часть — устная.

1. Каковы основы единообразия признаков первого поколения гибридов?

2. Каковы основы расщепления признаков во втором поколении?

3. Какие гены называются аллельными? Объясните понятия гомозигота и гетерозигота.

4. Объясните правила и закономерности при дигибридном скрещивании.

5. Дайте формулировку второго закона Менделя.

6. Задача в учебнике на стр. 213 № 3.

1. Разобрать рис. 107 на стр. 216

2. Решение задач на стр. 217 учебника.

Тесную связь между дигибридным скрещиванием и процессами, протекающими в половых клетках при созревании и оплодотворении.

В палочковидных хромосомах А и а, а в сферических В и в. Вследствие мейоза в гаметах остается по одной паре хромосом. В каждой хромосоме F 1 оказываются разные гены одной пары аллелей (кр. син.)

У гибрида F 1 образуются 4 сорта гамет, в результате оплодотворения образуется 16 категорий зигот.

В основе всегда будет лежать моногибридное расщепление в отношении (3:1).

Для дигибридов (3:1).

Для тригибридов (3:1).

Для n — ой степени гибридов (3:1).

Родительские формы с тремя генами разных аллелей ABC и авс.

F 2 — самостоятельно.

Второй закон Менделя применим лишь тогда. Когда гены разных аллелей находятся в разных хромосомах.

Эта теория была хорошо изучена Морганом. Объектом изучения служила мушка дрозофила (легко разводится, плодовита и поколение обладает разнообразными наследственными признаками).

Гены находящиеся в одной хромосоме являются сцепленными, т. е. наследуются вместе, не обладая расщеплением.

Пример: серая нормальные крылья х темная, зачаточные крылья

F 1 серая, нормальные крылья (гетерозигота по двум парам аллелей)

Мух с серым телом нормальными крыльями и темным телом зачаточными крыльями будет больше чем особей с перекомбинированными признаками (с. з. кр. и т. н. кр.)

Гены наследуются вместе (сцепленные между собой). При мейозе гены не расходятся, а наследуются вместе.

Закон Моргана — явление сцепления генов, локализованных в одной хромосоме.

Почему встречается перекомбинация родительских признаков? В процессе мейоза при конъюгации хромосом, они обмениваются участками (перекрест), Частота перекреста зависит от расстояния между хромосомами.

Биологическое значение: создаются новые наследственные комбинации генов, повышается наследственная изменчивость.

Полученные гибриды первого поколения (АаВ b ) будут давать четыре типа гамет в равном соотношении, так как в процессе мейоза из каждой пары генов в гамету попадает один ген, свободно комбинируясь с генами другой пары.

При оплодотворении каждая из четырех типов гамет одного организма случайно встречается с одной из гамет другого. Следовательно, возможно 16 вариантов их сочетания.

В результате скрещивания в зиготах получаются разные комбинации генов. Легко подсчитать, что по фенотипу потомство делится на 4 группы: 9 частей желтых гладких (А — B -), 3 части желтых морщинистых ( A — bb ), 3 части зеленых гладких (ааВ-) и 1 часть зеленых морщинистых ( aabb ).

(Запись А-В — обозначает, что если в генотипе есть хотя бы один доминантный ген, то независимо от второго гена в фенотипе проявится доминантный признак.

) Если учесть расщепление по одной паре признаков (желтый и зеленый цвет, гладкая и морщинистая поверхность), то получится: 9 3 особи с желтыми (гладкими) и 3 1 особи с зелеными (морщинистыми) семенами.

Их соотношение равно 12:4, или 3:1. Следовательно, при дигибридном скрещивании каждая пара признаков в потомстве дает расщепление независимо от другой пары, как и при моногибридном скрещивании.

При этом происходит случайное комбинирование генов (и соответствующих им признаков), приводящее к новым сочетаниям, которых не было у родительских форм.

В нашем примере исходные формы гороха имели желтые гладкие и зеленые морщинистые семена, а во втором поколении получено не только такое сочетание признаков, как у родителей, но и формы с желтыми морщинистыми и зелеными гладкими семенами.

Отсюда следует третий закон Менделя — закон независимого комбинирования признаков: при скрещивании гомозиготных особей, отличающихся по двум или нескольким парам альтернативных признаков, во втором поколении наблюдается независимое комбинирование генов разных аллельных пар и соответствующих им признаков.

Для проявления третьего закона Менделя необходимо соблюдение следующих условий: доминирование должно быть полным (при неполном доминировании и других видах взаимодействия генов числовые соотношения потомков с разными комбинациями признаков могут быть другими);

Дигибридное расщепление можно изобразить, используя таблицу, предложению впервые Пеннетом, она названа решеткой Пеннета.

На 108 рисунке видно, что мужские гаметы в решетке расположены горизонтально, а женские гаметы — вертикально. В клетках решетки указаны соединения гамет, те генотип зигот образованных в результате оплодотворения.

Аллельные гены как обычно обозначим буквами например, А — определяет желтый цвет, а — зеленый цвет, В — гладкую форму семян, в — морщинистую форму. Пользуясь принятыми символами генотипы исходных гомозиготных родительских форм обозначим как ААВВ и аавв, /то в результате мейоза), родительские формы образуют гаметы АВ и ад.

В результате оплодотворения в первом поколении появится гибрид с генотипом АаВв (рис. 111). Все гибриды первого поколения фенотипические будут похожи на одну из родительских особей, т.

к он гетерозиготей и присутствуют гены А и В (доминантные). При дальнейшем расщеплении ±1, т. е. во втором поколении можно предсказать результаты, при этом нужно воспользоваться решеткой Пеннета.

У дигетерозиготной особи должны образоваться четыре типа гамет АВ, Ав, аВ, ав. Так как каждая родительская особь образует по 4 типа гамет, то в результате скрещивания образуется 16 различных комбинаций (4 от 4д) во втором поколений ±2.

(Скрещивание, в котором участвуют две пары аллелей, называют дигибридным скрещиванием). Для определения наследуемых признаков из каждой пары генов произвели точный подотчет результатов.

В начале посчитали расщепление по окраске плодов: 416 желтых и 140 зеленых плодов, затем по форме плодов: 423 гладких и 133 морщинистых. По фенотипу соотношение числа желтых семян (А) к зеленым (а) равняется 12:4 или 3:1.

Это можно вычислить из решетки Пеннета, так из образованных 16 комбинации. 12 — с желтыми плодами, а 4 — с зеленым, по другому признаку: 12 — гладкие, а 4 — морщинистые, то приходим к выводу, что расщепление в паре генов идет независимо от других пар генов.

Это явление было установлено Г. Менделем и названо законом независимого расщепления: при скрещивании гомозиготных гибридов, отличающихся по паре (нескольким парам) признаков в потомстве наблюдается расщепление, результате которого происходит независимое наследование признаков, образованное поколения не схожее с родительскими формами.

Определение

Грегор Мендель (1822—1884) открыл основные законы наследования признаков в результате исследований, проведенных на горохе (Рisum sativum) в 1856—1863 г. г. Свои результаты он доложил в 1865 году и опубликовал в 1866 году.

Следует отметить, что сам Мендель не формулировал свои выводы в качестве «законов» и не присваивал им никаких номеров. Более того, многие «открытые» им факты были давно и хорошо известны, на что сам Мендель указывает в своей работе.

К середине XIX века было открыто явление доминантности (О. Саржэ, Ш. Ноден и др.). Часто все гибриды первого поколения похожи друг на друга (единообразие гибридов) и по данному признаку все они идентичны одному из родителей (его признак доминирует).

Они же показали, что рецессивные (не проявляющиеся у гибридов первого поколения) признаки не исчезают; при скрещивании гибридов между собой во втором поколении часть гибридов имеет рецессивные признаки («возврат к родительским формам»).

Было также показано (Дж. Госс и др.), что среди гибридов второго поколения с доминантным признаком встречаются разные — дающие и не дающие расщепление при самоопылении.

Главной заслугой Менделя было создание теории наследственности, которая объясняла изученные им закономерности наследования.

Методы и ход работы Менделя

    Мендель изучал, как наследуются отдельные признаки. Мендель выбрал из всех признаков только альтернативные — такие, которые имели у его сортов два четко различающихся варианта (семена либо гладкие, либо морщинистые; промежуточных вариантов не бывает). Такое сознательное сужение задачи исследования позволило четко установить общие закономерности наследования. Мендель спланировал и провел масштабный эксперимент. Им было получено от семеноводческих фирм 34 сорта гороха, из которых он отобрал 22 «чистых» (не дающих расщепления по изучаемым признакам при самоопылении) сорта. Затем он проводил искусственную гибридизацию сортов, а полученных гибридов скрещивал между собой. Он изучил наследование семи признаков, изучив в общей сложности около 20.000 гибридов второго поколения. Эксперимент облегчался удачным выбором объекта: горох в норме самоопылитель, но легко проводить искусственную гибридизацию. Мендель одним из первых в биологии использовал точные количественные методы для анализа данных. На основе знания теории вероятностей он понял необходимость анализа большого числа скрещиваний для устранения роли случайных отклонений.

Условия выполнения законов Менделя

В соответствии с законами Менделя наследуются только моногенные признаки. Если за фенотипический признак отвечает более одного гена (а таких признаков абсолютное большинство), он имеет более сложный характер наследования.

Изучается большое число скрещиваний (большое число потомков). Гаметы, содержащие аллели А и а, образуются в равном числе (обладают равной жизнеспособностью).

Нет избирательного оплодотворения: гаметы, содержащие любой аллель, сливаются друг с другом с равной вероятностью. Зиготы (зародыши) с разными генотипами одинаково жизнеспособны.

Http://lektsia. com/4xaa2e. html

Http://dic. academic. ru/dic. nsf/ruwiki/923612

Источник: https://kono-pizza.ru/tsitologiya/kakovy-tsitologicheskie-osnovy-edinoobraziya-gibridov-pervogo-pokoleniya/

Цитологические основы единообразия признаков первого поколения гибридов

Каковы цитологические основы единообразия гибридов первого поколения
⇐ ПредыдущаяСтр 16 из 36Следующая ⇒

Ответ:

При скрещивании двух чистых линий (ААВВ х аавв) в поколении дигибридов первого поколения наблюдается единообразие (генотипы АаВв). При скрещивании дигибридов первого поколения во втором поколении наблюдается НЕЗАВИСИМОЕ расщепление по признакам в отношении 3 к 1 по фенотипу и 1 к 2 к 2 к 1 по генотипу.

77. Второй закон Менделя.

При скрещивании гетерозиготных гибридов первого поколения между собой (самоопыления или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными состояниями признаков, т.е. возникает расщепление, которое происходит в определенных отношениях.

Так, в опытах Менделя на 929 растений второго поколения оказалось 705 с пурпурными цветками и 224 с белыми.

В опыте, в котором учитывался цвет семян, с 8023 семян гороха, полученных во втором поколении, было 6022 желтых и 2001 зеленых, а с 7324 семян, в отношении которых учитывалась форма семени, было получено 5474 гладких и 1850 морщинистых.

Исходя из полученных результатов, Мендель пришел к выводу, что во втором поколении 75% особей имеют доминантное состояние признака, а 25% – рецессивное (расщепление 3:1). Эта закономерность получила название второго закона Менделя, или закона расщепления.
Согласно этому закону и используя современную терминологию, можно сделать следующие выводы:

а) аллели гена, находясь в гетерозиготном состоянии, не изменяют структуру друг друга;
б) при созревании гамет у гибридов образуется примерно одинаковое число гамет с доминантными и рецессивными аллелями;

в) при оплодотворении мужские и женские гаметы, несущие доминантные и рецессивные аллели, свободно комбинируются. При скрещивании двух гетерозигот (Аа), в каждой из которых образуется два типа гамет (половина с доминантными аллелями – А, половина – с рецессивными – а), необходимо ожидать четыре возможных сочетания.

Яйцеклетка с аллелью А может быть оплодотворена с одинаковой долей вероятности как сперматозоидом с аллелью А, так и сперматозоидом с аллелью а; и яйцеклетка с аллелью а – сперматозоидом или с аллелью А, или аллелью а. В резульатате получаются зиготы АА, Аа, Аа, аа или АА, 2Аа, аа.

По внешнему виду (фенотипу) особи АА и Аа не отличаются, поэтому расщепление выходит в соотношении 3:1. По генотипу особи распределяются в соотношении 1АА:2Аа:аа.

Понятно, что если от каждой группы особей второго поколения получать потомство только самоопылением, то первая (АА) и последняя (аа) группы (они гомозиготные) будут давать только однообразное потомство (без расщепления), а гетерозиготные (Аа) формы будут давать расщепление в соотношении 3:1.

Таким образом, второй закон Менделя, или закон расщепления, формулируется так: при скрещивании двух гибридов первого поколения, которые анализируются по одной альтернативной паре состояний признака, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу в соотношении 1:2:1.

78. 78. цитологическое основы законы независимого наследования

Третий закон Менделя или закон независимого наследования при дигибридном (полигибридном) скрещивании. Этот закон выведен на основе анализа результатов, полученных при скрещивании особей, отличающихся по двум парам альтернативных признаков. Например: растение, дающее желтые, гладкие семена скрещивается с растением, дающим зеленые,морщинистые семена.

Во втором поколении возможно появление 4 фенотипов в отношении 9: 3: 3: 1 и 9 генотипов.

В результате проведенного анализа выяснилось, что гены разных аллельных пар и соответствующие им признаки передаются независимо друг от друга. Этот закон справедлив:

1. – для диплоидных организмов;

2. – для генов, расположенных в разных гомологичных хромосомах;

3. – при независимом расхождении гомологичных хромосом в мейозе и их случайном сочетании при оплодотворении.

79. Правила «чистоты гамет»

Кратко:

Закон чистоты гамет

— закон, или гипотеза, выдвинутая Г. Менделем в 1865 г. Закон гласит, что находящиеся в каждом организме пары наследственных факторов не смешиваются и не сливаются и при образовании гамет по одному из каждой пары переходят в них в чистом виде: одни гаметы несут доминантный ген, другие — рецессивный.

Гаметы никогда не бывают гибрид­ными по данному признаку. Для наследования признака не имеет значения, какая именно гамета несет ген признака — отцов­ская или материнская; у дочернего организма в одинаковой степени проявляются доминантные признаки и не проявляются рецессивные.

Закон чистоты гамет служит доказательством дис­кретного характера наследственности.

Полный ответ:

Гомозиготные по генотипу особи имеют одинаковые аллельные гены в одном локусе, например ВВ или bb. У гибридов F1 при полном доминировании проявляется только аллель В. Однако во втором поколении проявляются оба аллеля в чистом виде, без какого-либо изменения своих качеств, аналогично тому, что было у исходной родительской пары.

Рецессивные гены могут находится в неизменном состоянии под прикрытием доминантных сколь угодно долго.

Если в популяции черных собак основная масса гомозиготна, а гетерозиготы встречаются крайне редко, шансы их спаривания невелики, однако если такое происходит, то может родиться коричневый щенок, ничуть не отличающийся от тех, которые родятся у чисто коричневых собак.

Мендель сформулировал правило чистоты гамет, состоящее в том, что у гетерозиготной особи наследственные задатки (гены) не перемешиваются друг с другом, а передаются в половые клетки в неизменном виде.

Сущность правила (принципа) “чистоты гамет”:
1) это гипотеза, выдвинутая Г.Менделем (1865)
2) Правило гласит, что находящиеся в каждом организме пары наследственных факторов (в современной формулировке – генов) не смешиваются и не сливаются при образовании зиготы.


3) При гаметогенезе в организме гибрида в гаметы поступает по одной хромосоме из каждой пары гомологичных хромосом, и, следовательно, по ОДНОМУ гену из КАЖДОЙ ПАРЫ генов
4) правило (принцип) “чистоты гамет” служит доказательством дискретного характера наследственности.

⇐ Предыдущая11121314151617181920Следующая ⇒

Рекомендуемые страницы:

Источник: https://lektsia.com/4xaa2e.html

Цитологические основы законов Г. Менделя

Каковы цитологические основы единообразия гибридов первого поколения

Грегор Мендель для своих исследований избрал горох. Это растение довольно неприхотливо, быстро вегетирует и дает большое количество семян. Последнее обстоятельство очень важное для увеличения процента достоверности при статистической обработке.

Во времена Менделя еще ничего не было известно о генах. Механизм переноса наследственной информации оставался неизученным. Поэтому гениальные догадки Грегора Менделя не находили рационального подтверждения и объяснения. А в опытах с другими организмами Мендель не получил ожидаемого результата. Но он предложил закон (вернее, сначала он выдвинул гипотезу) чистоты гамет.

Замечание 1

Этот закон утверждает, что у гибридного (гетерозиготного) организма гаметы «чистые». Это означает, что каждая из гамет не может одновременно нести два аллельных гена. А несет лишь один из определенной совокупности.

Цитологические основы законов Менделя

Как сейчас известно, соматические клетки имеют, как правило, диплоидный (двойной) набор хромосом. Это означает, что аллельные гены – парные. Это могут быть две доминантные аллели (гомозигота по доминантному признаку), доминантная и рецессивная (гетерозигота) или две рецессивные (гомозигота по рецессивному признаку).

Во время мейоза, когда образуются половые клетки (гаметы), в каждую из них попадает лишь одна из пары хромосом – один аллельный ген из каждой пары. Гомозиготная особь может дать только один сорт гамет – с доминантным или рецессивным признаком.

А гетерозигота дает два сорта гамет в равных количествах – $50$% гамет с доминантным признаком, $50$% – с рецессивным.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

Первый закон Менделя с точки зрения цитологии

В генетике принято доминирующий признак обозначать большой буквой латинского алфавита, а рецессивную – маленькой. Итак, вернемся к рассмотрению генетических и цитологических основ первого закона Менделя.

Для своих опытов ученый выбрал чистые линии растений с различной окраской семян. Потомство чистых линий – это гомозиготные организмы. Значит мы можем обозначить набор необходимых нам признаков в соматических клетках растения как «АА» и «аа».

В ходе формирования половых клеток, каждое растение образует гаметы, несущие признаки, кторые мы обозначили как «А» или «а». При оплодотворении (слиянии гамет) образуется зигота с сочетанием аллелей «Аа». Это означает, что все гибриды первого поколения – гетерозиготы.

Доминантная аллель проявляется в фенотипе, а рецессивная – нет. Поэтому все гибриды первого поколения будут иметь одинаковую окраску семян.

Цитологические основы второго закона Менделя

При дальнейшем развитии гибридов первого поколения с набором аллелей «Аа» образуются половые клетки, половина из которых несет аллель «А». а другая половина – «а».

При дальнейшем скрещивании, могут обьразовываться зиготы со следующими комбинациями аллелей: «АА», «Аа» и «аа». Количество зигот с набором «Аа» (гетерозигот) будет равно количеству гмозигот вместе взятых.

Тоесть пропорция будет выглядеть так:

$1«АА» : 2«Аа» : 1«аа».$

Так как гетерозигота будет проявлять доминирующий признак, то в фенотипе такое расщепление признаков будет проявляться в соотношении $3 : 1$ (три доминирующих признака и один – рецессивный).

При неполном доминировании геторозиготные особи будут иметь промежуточные признаки. Тогда фенотипическое расщепление будет соответствовать пропорции расщепления по генотипу.

Цитологические основы третьего закона Менделя

Аналогичным образом объясняется и принцип действия третьего закона Менделя. Если признаки кодируются генами, содержащимися в разных хромосомах, то они распределяются независимо один от другого.

Гомозизоты по доминантным признакам для дигибридного скрещивания (по двум признакам) можно обозначить так: «ААВВ».

Гомозигота с рецессивными признаками обозначается «ааbb».

При получении гибридов первого поколения ($F1$), все они будут иметь генотип «АаВb», а в фенотипе – все будут иметь оба доминирующих признака, подтверждая первый закон Менделя.

Гибриды первого поколения дают такую комбинацию генов в гаметах: «АВ», «Аb», «аВ» и «аb». При получении гибридов второго поколения ($F2$), происходит расщепление и комбинирование признаков. Мы получаем такие генотипы: «ААВВ», $2$«ААВb», «ААbb», $2$«АаВВ», $4$«АаВb», $2$«Ааbb», «ааВВ»,$ 2$«ааВb» и «ааbb».

При кажущейся хаотичности это расщепление строго упорядоченное. Если рассматривать каждый признак в отдельности, то получим точное соответствие второму закону Менделя. Поэтому третий закон гласит о независимом комбинировании признаков. По сути – это два моногибридных скрещивания.

Источник: https://spravochnick.ru/biologiya/genetika_kak_nauka/citologicheskie_osnovy_zakonov_g_mendelya/

Каковы цитологические основы единообразия признаков первого поколения гибридов | | Medic Справка

Каковы цитологические основы единообразия гибридов первого поколения

При скрещивании двух чистых линий (ААВВ х аавв) в поколении дигибридов первого поколения наблюдается единообразие (генотипы АаВв). При скрещивании дигибридов первого поколения во втором поколении наблюдается НЕЗАВИСИМОЕ расщепление по признакам в отношении 3 к 1 по фенотипу и 1 к 2 к 2 к 1 по генотипу.

При скрещивании гетерозиготных гибридов первого поколения между собой (самоопыления или родственное скрещивание) во втором поколении появляются особи как с доминантными, так и с рецессивными состояниями признаков, т. е. возникает расщепление, которое происходит в определенных отношениях.

Так, в опытах Менделя на 929 растений второго поколения оказалось 705 с пурпурными цветками и 224 с белыми.

В опыте, в котором учитывался цвет семян, с 8023 семян гороха, полученных во втором поколении, было 6022 желтых и 2001 зеленых, а с 7324 семян, в отношении которых учитывалась форма семени, было получено 5474 гладких и 1850 морщинистых.

Исходя из полученных результатов, Мендель пришел к выводу, что во втором поколении 75% особей имеют доминантное состояние признака, а 25% — рецессивное (расщепление 3:1). Эта закономерность получила название Второго закона Менделя, или закона расщепления.

Согласно этому закону и используя современную терминологию, можно сделать следующие выводы:

А) аллели гена, находясь в гетерозиготном состоянии, не изменяют структуру друг друга;

Б) при созревании гамет у гибридов образуется примерно одинаковое число гамет с доминантными и рецессивными аллелями;

В) при оплодотворении мужские и женские гаметы, несущие доминантные и рецессивные аллели, свободно комбинируются.

При скрещивании двух гетерозигот (Аа), в каждой из которых образуется два типа гамет (половина с доминантными аллелями — А, половина — с рецессивными — а), необходимо ожидать четыре возможных сочетания.

Яйцеклетка с аллелью А может быть оплодотворена с одинаковой долей вероятности как сперматозоидом с аллелью А, так и сперматозоидом с аллелью а; и яйцеклетка с аллелью а — сперматозоидом или с аллелью А, или аллелью а.

В резульатате получаются зиготы АА, Аа, Аа, аа или АА, 2Аа, аа.

По внешнему виду (фенотипу) особи АА и Аа не отличаются, поэтому расщепление выходит в соотношении 3:1. По генотипу особи распределяются в соотношении 1АА:2Аа:аа.

Понятно, что если от каждой группы особей второго поколения получать потомство только самоопылением, то первая (АА) и последняя (аа) группы (они гомозиготные) будут давать только однообразное потомство (без расщепления), а гетерозиготные (Аа) формы будут давать расщепление в соотношении 3:1.

Таким образом, второй закон Менделя, или закон расщепления, формулируется так: при скрещивании двух гибридов первого поколения, которые анализируются по одной альтернативной паре состояний признака, в потомстве наблюдается расщепление по фенотипу в соотношении 3:1 и по генотипу в соотношении 1:2:1.

78. 78. цитологическое основы законы независимого наследования

Третий закон Менделя или закон независимого наследования при дигибридном (полигибридном) скрещивании. Этот закон выведен на основе анализа результатов, полученных при скрещивании особей, отличающихся по двум парам альтернативных признаков. Например: растение, дающее желтые, гладкие семена скрещивается с растением, дающим зеленые, морщинистые семена.

Во втором поколении возможно появление 4 фенотипов в отношении 9: 3: 3: 1 и 9 генотипов.

В результате проведенного анализа выяснилось, что гены разных аллельных пар и соответствующие им признаки передаются независимо друг от друга. Этот закон справедлив:

1. – для диплоидных организмов;

2. – для генов, расположенных в разных гомологичных хромосомах;

3. – при независимом расхождении гомологичных хромосом в мейозе и их случайном сочетании при оплодотворении.

79. Правила «чистоты гамет»

— закон, или гипотеза, выдвинутая Г. Менделем в 1865 г. Закон гласит, что находящиеся в каждом организме пары наследственных факторов не смешиваются и не сливаются и при образовании гамет по одному из каждой пары переходят в них в чистом виде: одни гаметы несут доминантный ген, другие — рецессивный.

Гаметы никогда не бывают гибрид­ными по данному признаку. Для наследования признака не имеет значения, какая именно гамета несет ген признака — отцов­ская или материнская; у дочернего организма в одинаковой степени проявляются доминантные признаки и не проявляются рецессивные.

Закон чистоты гамет служит доказательством дис­кретного характера наследственности.

Гомозиготные по генотипу особи имеют одинаковые аллельные гены в одном локусе, например ВВ или bb. У гибридов F1 при полном доминировании проявляется только аллель В. Однако во втором поколении проявляются оба аллеля в чистом виде, без какого-либо изменения своих качеств, аналогично тому, что было у исходной родительской пары.

Рецессивные гены могут находится в неизменном состоянии под прикрытием доминантных сколь угодно долго.

Если в популяции черных собак основная масса гомозиготна, а гетерозиготы встречаются крайне редко, шансы их спаривания невелики, однако если такое происходит, то может родиться коричневый щенок, ничуть не отличающийся от тех, которые родятся у чисто коричневых собак.

Мендель сформулировал правило чистоты гамет, состоящее в том, что у гетерозиготной особи наследственные задатки (гены) не перемешиваются друг с другом, а передаются в половые клетки в неизменном виде.

Сущность правила (принципа) “чистоты гамет”:

1) это гипотеза, выдвинутая Г. Менделем (1865)

2) Правило гласит, что находящиеся в каждом организме пары наследственных факторов (в современной формулировке — генов) не смешиваются и не сливаются при образовании зиготы.

3) При гаметогенезе в организме гибрида в гаметы поступает по одной хромосоме из каждой пары гомологичных хромосом, и, следовательно, по ОДНОМУ гену из КАЖДОЙ ПАРЫ генов

4) правило (принцип) “чистоты гамет” служит доказательством дискретного характера наследственности.

Цитологические основы закономерностей наследования

Гипотеза чистоты гамет. Статистический характер закона расщепления.

В чем причина расщепления? Почему при гибридизации не возникает стойких гибридов, а наблюдается расщепление в строго определенных численных соотношениях? Для объяснения явления расщепления Мендель предложил гипотезу чистоты гамет, которая в дальнейшем получила полное подтверждение в цитологических исследованиях.

Связь между поколениями при половом размножении осуществляется через половые клетки (гаметы). Очевидно, гаметы несут материальные наследственные факторы – гены, которые определяют развитие того или иного признака.

Обозначим ген, определяющий доминантный признак, какой-либо заглавной буквой алфавита (например, А), а соответствующий ему рецессивный ген – малой буквой (соответственно а). Обозначим соединение гамет, несущих гены А и а, знаком умножения: А*а=Аа.

Как видно, возникающая в результате гетерозиготная форма (F1) имеет оба гена, как доминантный, так и рецессивный – Аа. Гипотеза чистоты гамет утверждает, что у гибридной (гетерозиготной) особи половые клетки чисты, т. е. имеют по одному гену из данной пары.

Это означает, что у гибрида Аа будут в равном числе возникать гаметы с геном А (доминантный ген) и с геном а (рецессивный ген). Какие же между ними возможны сочетания? Очевидно, равновероятны четыре комбинации, поясняемые следующей схемой.

В результате четырех комбинаций получатся сочетания АА, Аа, аА и аа, иначе, АА, 2Аа и аа. Первые три сочетания дадут особей с доминантным признаком, четвертое – с рецессивным. Гипотеза чистоты гамет удовлетворительно объясняет причину расщепления и наблюдаемые при этом численные соотношения.

Вместе с тем становятся ясны и причины различия в отношении дальнейшего расщепления особей с доминантными признаками в третьем и последующих поколениях гибридов. Особи с доминантными признаками по своей наследственной природе неоднородны.

Одна из трех (АА), очевидно, будет давать гаметы только одного сорта (А) и, следовательно, при самоопылении или скрещивании с себе подобными не будет расщепляться. Две другие (Аа) дадут гаметы двух сортов, в их потомстве будет происходить расщепление в тех же численных соотношениях, что и у гибридов второго поколения.

Когда полного доминирования не наблюдается и гибриды носят промежуточный характер, особи наследственного состава Аа отличаются от гомозиготных форм не только по наследственной структуре, но и по видимым признакам [103].

Исходя из гипотезы чистоты гамет, мы можем углубить понятия гомозиготы и гетерозиготы.

Гомозиготами по данной паре признаков называют такие особи, которые образуют лишь один сорт гамет, и поэтому при самоопылении или скрещивании с себе подобными в потомстве не дают расщепления.

Гетерозиготы дают разные гаметы (несущие разные гены данной пары), и поэтому в их потомстве наблюдается расщепление.

Гипотеза чистоты гамет устанавливает, что закон расщепления есть результат случайного сочетания гамет, несущих разные гены. Соединится ли гамета, несущая ген А, с другой гаметой, несущей ген А или же а, при условии равной жизнеспособности гамет и равного их количества, одинаково вероятно.

При случайном характере соединения гамет общий результат оказывается закономерным. Здесь видна статистическая закономерность, определяемая большим числом равновероятных встреч гамет.

К числу статистических закономерностей, определяемых равной вероятностью встречи разных гамет, относится рассмотренный ранее закон расщепления (первый закон Менделя).

Из сказанного становится понятно, что при моногибридном скрещивании отношение 3:1 (в случае полного доминирования) или 1:2:1 (при неполном доминировании) следует рассматривать как закономерность, основанную на статистических явлениях.

Цитологические основы закономерностей наследования. В то время, когда Мендель сформулировал гипотезу чистоты гамет, еще ничего не было известно о митозе, о развитии гамет, о мейозе. В настоящее время благодаря успехам цитологии законы Менделя получили твердую цитологическую базу.

Каждый вид растений и животных обладает определенным числом хромосом. В соматических клетках все хромосомы парные (за исключением половых).

Рис. 104. Цитологические основы моногибридного расщепления

Допустим для простоты, что у изучаемого нами организма имеется всего одна пара хромосом [104], а гены – это участки хромосом. Парные гены расположены в гомологичных хромосомах.

Легко понять, что при мейозе из каждой пары гомологичных хромосом в гаметах окажется по одной, а следовательно, и по одному гену из каждой пары. При образовании диплоидного набора хромосом в зиготе восстановится парность хромосом и локализованных в них генов.

Если исходные родительские формы были гомозиготными и одна из них обладала хромосомами, несущими доминантные гены, а другая – рецессивные, то, понятно, гибрид первого поколения будет гетерозиготным.

При созревании половых клеток у гетерозигот в процессе мейоза гомологичные хромосомы окажутся в разных гаметах и, следовательно, в гаметах будет по одному гену из каждой пары.

Как вы знаете, в дальнейшем в процессе развития организма при делении клетки происходит удвоение хромосом. Ему предшествует удвоение молекул ДНК, а значит, и генов.

Аллельные гены. Рассмотренный материал о закономерностях наследования при моногибридном скрещивании позволяет сформулировать некоторые основные понятия, необходимые для дальнейшего изучения генетики. На примере наследования у гороха, ночной красавицы и других объектов видно, что гены, определяющие развитие взаимоисключающих признаков, составляют пары.

Такими парами являются, например, ген желтой и ген зеленой окраски семян гороха, ген белой и ген красной окраски цветка ночной красавицы и т. п. Парные гены называют аллельными. Следовательно, гены желтой и зеленой окраски семян гороха – это аллельные гены (аллели). Аллельные гены располагаются в гомологичных, т. е.

парных, хромосомах, вследствие чего при мейозе они оказываются в разных гаметах.

1. Каковы цитологические основы единообразии признаков первого поколении гибридов? 2. Каковы цитологические основы расщепления признаков во втором поколении? 3. У крупного рогатого скота ген безрогости (комолости) доминирует над геном рогатости.

Какого результата можно ожидать от скрещивания гетерозиготного быка с гетерозиготными комолыми коровами? С гомозиготными комолыми коровами? Мажет ли от рогатых коровы и быка родиться комолый теленок? 4. В чем заключается цитологическая основа чистоты гамет? 5. Какие гены называют аллельными? 6.

Объясните понятия «гомозигота» и «гетерозигота».

Источники:

Http://lektsia. com/4xaa2e. html

Http://blgy. ru/biology10p/genetics2

Источник: http://medics-spravka.ru/kakovy-citologicheskie-osnovy-edinoobraziya-priznakov-pervogo-pokoleniya-gibridov/

Консультация доктора
Добавить комментарий