Основной метод цитологии изучающий жизнедеятельность клетки

Методы цитологии

Основной метод цитологии изучающий жизнедеятельность клетки

Строение, ультраструктура и функционирование клеточных органоидов исследуется в настоящее время с помощью следующих основных методов: световой и электронной, темнопольной, фазово-контрастной, поляризационной, люминесцентной микроскопии, используемых для изучения строения, ультраструктуры фиксированных клеток, и дифференциального центрифугирования, позволяющего выделять отдельные органоиды и анализировать их цитохимическими, биохимическими, биофизическими, и другими методами.

Световая микроскопия.

Принцип метода состоит в том, что пучок света, пройдя через объект, попадает в систему линз объектива, и строит первичное изображение, которое увеличивается с помощью линз окуляра. оптическая часть микроскопа, определяющая его основные возможности, – объектив.

В современных микроскопах объективы сменные, что позволяют изучать клетки при разных увеличениях. Главной характеристикой микроскопа как оптической системы является разрешающая способность, т.е. способность давать раздельное изображение двух близких друг к другу объектов.

Изображения, даваемые объективом, можно увеличить во много раз, применяя сильный окуляр или, например проекции на экран (до 105 раз). Разрешающая способность светового микроскопа ограничивается длиной волны света: чем меньше длина волны, тем выше разрешающая способность.

Обычно в световых микроскопах используются источники освещения в видимой области спектра (400-700 нм), поэтому максимальное разрешение микроскопа в этом случае может быть не выше 200-350 нм (0,2-0,35 мкм). Если использовать фиолетовый свет (260-280 нм), то можно повысить разрешение до 130 – 140 нм (0,13-0,14 мкм).

Это будет пределом теоретического разрешения светового микроскопа, определяемого волновой природой света.

Таким образом, все, что может дать световой микроскоп как вспомогательный прибор к нашему глазу, – это повысить разрешающую способность его примерно в 1000 раз (невооруженный глаз человека имеет разрешающую способность около 0,1 мм, что равно 100 мкм).

Это и есть «полезное» увеличение микроскопа, выше которого мы будем только увеличивать контуры изображения, не открывая в нем новых деталей.

Следовательно, при использовании видимой области света 0,2-0,3 мкм является конечным пределом разрешения светового микроскопа.

Электронная микроскопия.

В принципе электронный микроскоп устроен так же, как и световой, только роль светового пучка выполняет в нем пучок электронов, а фокусируется этот пучок не линзами, а электромагнитами.

Однако для пучка электронов длина волны значительно короче длин волн видимого света, что и обеспечивает более высокую разрешающую способность электронного микроскопа по сравнению со световым микроскопом.

Разрешение у современных электронных микроскопов 0,2-1 нм.

В трансмиссионном электронном микроскопе электроны проходят сквозь объект подобно тому, как в световом микроскопе сквозь него проходит свет. В результате пучок электронов создает изображение объекта на фотографической пластинке.

Одно из главных неудобств электронного микроскопа заключается в том, что в камере должен поддерживаться высокий вакуум, потому что в воздушной среде электроны легко отклоняются и захватываются молекулами газа.

Живая же материя не может существовать в высоком вакууме, так как в этих условиях испаряется вся содержащаяся в ней вода; поэтому при помощи трансмиссионного электронного микроскопа можно исследовать только фиксированный материал.

Кроме того, срезы должны быть очень тонкими, чтобы сквозь них могли проходить электроны.

В сканирующем электронном микроскопе электроны отражаются от поверхности объекта и создают изображение при движении в обратном направлении.

Предел разрешения у сканирующего микроскопа ниже, чем у трансмиссионного, и ему требуется не столь высокий вакуум.

Благодаря этому с помощью сканирующего электронного микроскопа можно проводить прижизненные исследования некоторых организмов с достаточно твердыми покровами.

Он позволяет также получать превосходные фотографии, воспроизводящие в мельчайших деталях поверхности некоторых живых существ. Чтобы усилить контрастность конечного изображения, почти все объекты окрашивают.

В световой микроскопии используют красители, а для трансмиссионного электронного микроскопа – фиксаторы, содержащие тяжелые металлы (например, четырехокись осмия, перманганат калия, свинец), способные поглощать электроны.

Для сканирующего электронного микроскопа материал часто замораживают, чтобы получить поверхность, покрытую льдом. При этом исключаются потери воды водорастворимых веществ, меньшими являются также химические изменения структур.

При анализе данных, полученных с помощью электронного микроскопа, надо помнить, что этим методом исследуются статические состояния клетки в момент быстрой остановки движения цитоплазмы, вызванной воздействием фиксирующих химических веществ.

Темнопольная микроскопия

Суть его в том, что подобно пылинкам в луче света (эффект Тиндаля) в клетке при боковом освещении светятся мельчайшие частицы (меньше 0,2 мкм), отраженный свет которых попадает в объектив микроскопа. Этот метод успешно применяется при изучении живых клеток.

Метод фазово-контрастной микроскопии основан на том, что отдельные участки прозрачной, в общем, клетки хоть мало, но все же отличаются друг от друга по плотности и по светопреломлению. Проходя через них, свет изменяет свою фазу, однако такое изменение фазы световой волны наш глаз не улавливает, так как он чувствителен только к изменению интенсивности света.

В фазово-контрастном микроскопе в объектив вмонтирована специальная пластинка, проходя через которую луч света испытывает дополнительный сдвиг фазы колебаний. При построении изображения взаимодействуют уже лучи, находящиеся в одной фазе либо в противофазе, но обладающие разной амплитудой; тем самым создается светло-темное контрастное изображение объекта.

С помощью поляризационного микроскопа изучают объекты, обладающие так называемой изотропией, т.е. упорядоченной ориентацией субмикроскопических частиц (волокна веретена деления, миофибриллы и др.). У такого микроскопа перед конденсором помещается поляризатор, который пропускает световые волны с определенной скоростью поляризации.

После препарата и объектива помещается анализатор, который может пропускать свет с этой плоскостью поляризации. Когда между скрещенными призмами будет находиться объект, обладающий двойным лучепреломлением, т.е.

способностью поляризовать свет, он будет виден как светящийся на темном поле. С помощью поляризационного микроскопа можно убедиться, например, в ориентированном расположении мицелл в клеточной стенке растений.

При изучении живых клеток широко используют флуоресцирующие красители и метод флуоресцентной микроскопии.

Суть его заключается в том, что целый ряд веществ обладают способностью светиться (флуоресцировать, люминесцировать) при поглощении ими световой энергии.

Спектр флуоресценции всегда смещен в сторону больших длин волн по отношению к возбуждающему флуоресценцию излучению. Этот принцип позволяет рассматривать флуоресцирующие объекты в зоне коротких волн.

В таких микроскопах применяются фильтры, дающие освещение в сине-фиолетовой области. Существуют ультрафиолетовые люминесцентные микроскопы.

Собственной флуоресценцией обладают некоторые пигменты (хлорофиллы, бактериальные пигменты), витамины (А и В2), гормоны.

Можно применять метод флуоресцентной микроскопии, добавляя живым клеткам флуоресцирующие вещества, которые избирательно связываются с определенными структурами, вызывая их вторичную люминесценцию.

Для изучения клеток органов и тканей животных используют метод клеточных культур. Простой вариант этого метода заключается в том, что в камеру, наполненную питательной средой, помещают небольшой кусочек живой ткани. Через некоторое время на периферии такого кусочка начинается деление и рост клеток.

В другом случае вырезанный кусочек ткани слегка обрабатывают раствором фермента трипсина или хелатона версена, что приводит к его диссоциации, к полному разобщению клеток друг от друга.

Затем такую взвесь отмытых клеток помещают в сосуд с питательной средой, где они опускаются на дно, прикрепляются к стеклу и начинаются размножаться, образуя сначала колонии, а затем сплошной клеточный пласт.

Так растут однослойные клеточные культуры, очень удобные для прижизненных наблюдений. При культивировании вне организма кроме смены среды важно поддерживать и необходимую температуру, и соблюдение стерильности. В культуре можно выращивать и растительные клетки.

Для этого кусочки ткани обрабатываются ферментами, растворяющими клеточные оболочки. Отделившиеся клеточные тела, протопласты, помещают в культуральную среду, где они делятся и образуют зоны размножившихся клеток.

Сейчас метод культивирования клеток вне организма широко используется не только для цитологических, но и генетических, вирусологических и биохимических исследований.

Наблюдения за живыми клетками обычно регистрируются в виде фотографий, сделанных с помощью специальных фотонадсадок к микроскопу. Живую клетку можно снимать и на кинопленку.

Применяя такую ускоренную или замедленную киносъемку (цейтраферная съемка), можно подробно видеть протекание важных процессов, как деление клеток, фагоцитоз, течение цитоплазмы, биение ресничек и т.д.

Несмотря на важность и достаточную простоту витальных наблюдений, большая часть сведений о структуре и свойствах клеток получена на фиксированном материале.

Задачи фиксации – это убить клетку, прекратить активность внутриклеточных ферментов, предотвратить распад клеточных компонентов, а также избежать потери структур и веществ, препятствовать появлению структур, отсутствующих в живой клетке.

В качестве фиксаторов применяют альдегиды и их смеси с другими веществами, спирты, сулема, четырехокись осмия и др. После фиксации объекты подвергают дополнительной обработке – окрашиванию. Для окраски применяют различные натуральные (гематоксилин и кармин и др.) и главным образом синтетические красители.

Но для окрашивания клеток в составе органов необходимо получить их срезы. Срезы до 5 -10 мкм получают на микротоме.

Существует ряд специфических красочных приемов направленных на выявление специфических химических веществ получил название гистохимических или цитохимических. Это собственно цитохимические реакции.

Основные требования, предъявляемые к такого рода реакциям, следующие: специфичность, связывание красителя, неизменность, локализация вещества.

Количество конечного продукта цитохимической реакции можно определить с помощью цитофотометрии.

Основу его составляет определение количества химических веществ по поглощению ими света определенной длины волны (например, при определении количества ДНК на клетку после реакции Фельгена).

Количественную оценку получают не только поглощающие объекты и вещества, но и излучающие.

Разработаны приемы количественной флуорометрии, позволяющие по степени свечения определить содержание веществ, с которыми связываются флуорохромы.

Для выявления белков, отдельных последовательностей нуклеотидов в ДНК или для определения мест локализации РНК-ДНК – гибридных молекул используют метод иммунофлуоресценции.

Для выяснения локализации мест синтеза биополимеров, для определения переноса веществ в клетке, для наблюдения за миграцией или свойствами отдельных клеток широко используют метод авторадиографии – регистрации веществ, меченых изотопами. Например, с помощью этого метода при использовании меченых предшественников РНК было показано, что вся РНК синтезируется только в интерфазном ядре, а наличие цитоплазматической РНК является результатом миграции синтезированных молекул из ядра.

В цитологии применяют различные аналитические и препаративные методы биохимии. В последнем случае можно получить в виде отдельных фракций разнообразные клеточные компоненты и изучать их химию, ультраструктуру и свойства. В настоящее время в виде чистых фракций получают практически любые клеточные органеллы и структуры.

Одним из основных способов выделения клеточных структур является дифференциальное (разделительное) центрифугирование.

Принцип его применения состоит в том, что время для оседания частиц в гомогенате зависит от их размера и плотности: чем больше частица или чем она тяжелее, тем быстрее она осядет на дно пробирки.

Чтобы ускорить этот процесс оседания используют ускорения, создаваемые центрифугой.

При повторном дробном центрифугировании смешанных подфракции можно получить чистые фракции.

В случаях более тонкого разделения фракций используют центрифугирование в градиенте плотности сахарозы, что позволяет хорошо разделить компоненты, даже незначительно отличающиеся друг от друга по удельной массе.

Полученные фракции, прежде чем их анализировать биохимическими способами, необходимо проверить на чистоту с помощью электронного микроскопа.

Контрольные вопросы:

1. Уровни организации живой материи

2. Клеточная теория организации организмов

3. Методы исследования в цитологии

4. Задачи и предмет цитологии

5. Устройство светового микроскопа

6. Устройство электронного микроскопа

7. Техника безопасности при цитологических работах

8. Требования к подготовке биологического материала для цитологического исследования

9. Фиксирующие вещества, механизм действия

10. Цитохимия, требования к материалу и возможности

11. Количественный анализ (морфометрия), требования и возможности

12. Артефакты в цитологии, пути объективизации результатов

Рекомендуемая литература:

1. Заварзин А.А., Харазова А.Д. Основы общей цитологии. – Л., 1982.

2. Ченцов Ю.С. Основы цитологии. – М., 1984.

3. Шубникова Е.А. Функциональная морфология тканей. – М., Изд-во МГУ, 1981.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/12_57263_metodi-tsitologii.html

Методы цитологии. Клеточная теория. урок. Биология 10 Класс

Основной метод цитологии изучающий жизнедеятельность клетки

Тема: Основы цитологии

Урок: Методы цитологии. Клеточная теория

Для изучения жизнедеятельности и строения клетки используют различные подходы или методы исследования.

Разрешающая способность человеческого глаза составляет 100 микрометров (микрон).

То есть, если вы начертите две линии на расстоянии 100 микрон друг от друга и посмотрите на них, то эти две линии сольются в одну, а если вы поставите две точки на расстоянии 100 микрометров, эти две точки покажутся вам одной точкой.

Размеры клеток и клеточных компонентов определяются микронами или долями микрон. Для того чтобы увидеть структуру такого масштаба и размера, необходимы оптические приборы.

Исторически сложилось, что первым оптическим прибором был световой микроскоп (рис. 1).

Рис. 1. Световой микроскоп

Лучший световой микроскоп имеет разрешающую способность около 0,2 микрометров, то есть 200 нанометров, что примерно в 500 раз улучшает возможности человеческого глаза.

Первые микроскопы были созданы в конце XVI в – начале XVII века, а первым человеком, который использовал микроскоп для изучения живых объектов, был Роберт Гук, это случилось в 1665 году.

Он изучал растительные ткани и показал, что пробка и другие растительные ткани состоят из ячеек, разделенных перегородками, эти ячейки он назвал клетками.

Световые микроскопы очень широко применяются и в настоящее время, однако они имеют ряд недостатков. Одни из них заключаются в том, что с помощью светового микроскопа невозможно увидеть объекты, размеры которых меньше длины световой волны – 400-800 нанометров, поскольку световая волна не может быть отражена таким объектом, а огибает его.

В начале 30-х годов XX века был создан электронный микроскоп (рис. 2), который давал биологам возможность увидеть объекты размером 0,5 нанометров.

Почему это произошло? Потому что физики предложили биологам использовать не световой луч, а поток электронов, которые могли уже отражаться от более мелких объектов.

Рис. 2. Сравнительная характеристика светового (сверху) и электронного (снизу) микроскопа

На рисунке 2 представлены рабочие диапазоны светового и электронного микроскопов. Как мы видим, клеточные органеллы и вирусы можно увидеть только с помощью электронного микроскопа.

В сущности, принцип действия электронного микроскопа такой же, как и у светового, в котором пучок световых лучей направляется линзой конденсатора через образец, а изображение увеличивается с помощью системы линз. В электронном микроскопе оператор сидит у пульта управления лицом к колонне, по которой проходит пучок электронов (рис. 3).

Электронный микроскоп перевернут вверх дном по сравнению со световым микроскопом. Здесь у электронного микроскопа источник электронов находится в верхней части колоны, а сам образец – внизу.

Рис. 3. Принцип работы светового (слева) и электронного (справа) микроскопа

На вольфрамовую нить накала, находящуюся в верхней части колонны, подается высокое напряжение, и нить накала излучает пучок электронов, чтоб сфокусировать эти электроны, необходимы электромагниты.

Внутри колонны создается глубокий вакуум, чтобы сократить до минимума рассеивание электронов. В трансмиссионном просвечивающем микроскопе электроны проходят через образец, поэтому сам образец должен быть очень тонким, иначе электроны могут быть поглощены этим образцом, или рассеются. Пройдя через образец, электроны фокусируются добавочными электромагнитными линзами.

Электроны невидимы для человеческого глаза, поэтому они направляются на флуоресцентный экран, который воспроизводит видимые изображения или на фотопленку. Так можно получить постоянный фотоснимок – электронную микрофотографию.

Для того что бы получить объемные изображения предметов, используют сканирующий электронный микроскоп (рис. 4).

Рис. 4. Объемные изображения пыльцы растений (справа), полученные при помощи сканирующего электронного микроскопа (слева)

В нем точно сфокусированный пучок электронов движется взад и вперед по поверхности образца, а отраженные от поверхности электроны собираются и формируют изображение, наподобие того, которое возникает на экране телевизора.

С помощью электронного микроскопа можно увидеть только неживые объекты. Процессы, происходящие в клетке, то есть живую клетку, можно наблюдать в мощный световой микроскоп при замедленной кинофотосъёмке.

Если требуется проследить за судьбой какого-либо химического соединения в клетке, то можно заменить один из атомов в его молекуле на радиоактивный изотоп. Тогда эта молекула будет иметь радиоактивную метку, по которой ее можно обнаружить с помощью счетчика радиоактивных частиц или по способности засвечивать фотопленку.

Для выделения и изучения отдельных органоидов клетки используется метод ультрацентрифугирования: разрушенные клетки в пробирке вращаются с очень большой скоростью в центрифугах.

Так как разные составные части клеток имеют различные массу, размеры и плотность, то они под действием центробежной силы оседают на дно с разными скоростями.

Таким образом, изучают митохондрии, рибосомы и другие органеллы.

Рис. 5. Создатели клеточной теории М. Шлейден и Т. Шванн

В XVIII – XIX веках основным орудием исследования живых объектов в руках биологов был световой микроскоп. В 1838 году вышла книга Маттиаса Шлейдена (рис.

 5) «Материалы к филогенезу», в которой он показал, что все растительные ткани состоят из клеток и рассуждал о вопросе происхождения клеток в живых организмах, непосредственно в растительных организмах. Ровно через год в 1839 году Теодор Шванн (рис.

 5) опубликовал свою книгу «Микроскопические исследования о соответствии в структуре, и росте животных и растений» в которой и были изложены первые версии клеточной теории.

Вот основные постулаты клеточной теории:

1. Все живые существа состоят из клеток.

2. Все клетки имеют сходное строение, химический состав и общие принципы жизнедеятельности.

3. Каждая клетка самостоятельна: деятельность организма является суммой процессов жизнедеятельности составляющих их частей.

Несмотря на всю прогрессивность клеточной теории, Шванн и Шлейден ошибочно полагали, что новые клетки появляются из внеклеточного вещества, поэтому существенным дополнением клеточной теории был принцип Рудольфа Вирхова (каждая клетка из клетки).

Позднее Вальтер Флеминг описал процесс деления клетки – митоз. А Оскар Гертвиг и Эдуард Страсбургер независимо друг от друга, на основании экспериментов с одноклеточными водорослями, пришли к выводу, что наследственная информация клетки заключена в ядре.

Таким образом, работами многих исследователей была создана современная клеточная теория, которая имеет следующие положения:

1. Клетка является универсальной структурной и функциональной единицей живого.

2. Все клетки имеют сходное строение, химический состав и общие принципы жизнедеятельности.

3. Клетки образуются только при делении предшествующих им клеток.

4. Клетки способны к самостоятельной жизнедеятельности, но в многоклеточных организмах их работа скоординирована, и организм представляет собой целостную систему.

Микроскоп и время. История создания микроскопа не совсем ясна, известно, что он появился в конце XVI – в начале XVII века, и одним из мастеров, который сконструировал микроскоп, был Захарий Янсен, очковый мастер (рис. 6).

Рис. 6. Один из первых изготовителей микроскопов, З. Янсен, и его творение

Долгое время он использовался как игрушка, и даже Г. Галилей в 1619 году писал, что любопытно смотреть через микроскоп на муху размером в теленка, и только Роберт Гук в 1665 г. стал использовать микроскоп в научных исследованиях. Он рассматривал растительные ткани и клетки пробки, и таким образом открыл клетки у растений.

Р. Гук усовершенствовал микроскоп (недостатком первых микроскопов было плохое освещение). С этой целью Гук сделал приспособление, состоящее из сферы, наполненной водой, или из плосковыпуклой линзы, фокусировавшей солнечный свет. А в вечернее время Гук использовал светильник, который был дополнительным источником освещения.

Домашнее задание

1. Что такое микроскоп?

2. Чем световой микроскоп отличается от электронного микроскопа?

3. Опишите метод ультрацентрифугирования.

4. Что такое радиоактивные маркеры? Как они используются?

5. Перечислите ученых, работы которых способствовали возникновению и развитию клеточной теории.

6. Перечислите постулаты клеточной теории.

7. Обсудите с друзьями и родными, каким образом из одной клетки развивается целый организм. Как можно влиять на этот процесс?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Википедия (Источник).

2. Википедия (Источник).

3. Википедия (Источник).

4. Википедия (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.

4. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. – 5-е изд., стереотип. – Дрофа, 2010. – 388 с.

5. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Источник: https://interneturok.ru/lesson/biology/10-klass/bosnovy-citologii-b/metody-tsitologii-kletochnaya-teoriya

Цитология – наука о строении и функции клеток

Основной метод цитологии изучающий жизнедеятельность клетки

Все живые организмы состоят из клеток – из одной (одноклеточные организмы) или многих (многоклеточные).

Определение 1

Наука, изучающая строение, химический состав, процессы жизнедеятельности и размножения клеток, называется цитология (от греч. сytos – клетка, logos – наука).

Предметом цитологии является клетка многоклеточных грибов, растений и животных, а также одноклеточные организмы (бактерии, одноклеточные грибы и водоросли, простейшие).

Цитология занимается изучением строения, химического состава и функций клеток, функций внутриклеточных структур, размножения и развития клеток, приспособление клеток к условиям внешней среды.

Современная цитология – комплексная наука. Она очень тесно связаны с другими биологическими науками: физиологией, ботаникой, зоологией, физиологией, эволюционным учением.

Существует общая и частная цитология.

Предметом исследования общей цитологии являются общие для большинства клеток элементы: их структура, функции, процессы метаболизма, реакция на повреждения и патологические изменения, приспособление к окружающим условиям.

Ничего непонятно?

Попробуй обратиться за помощью к преподавателям

В частной цитологии исследует особенности каждого типа клеток в зависимости от их специализации (многоклеточные организмы) или эволюционной адаптации к внешней среде (бактерии).

Чёткие грани между цитологией, биохимией, биологией развития, молекулярной биологией и молекулярной биофизикой стёрлись благодаря новым методам изучения компонентов клетки, развитию и усовершенствованию исследований цитохимии, особенно ферментов, использованию при изучении процессов синтеза макромолекул клетки радиоактивных изотопов, внедрению методов электронной цитохимии, применению для изучения локализации индивидуальных белков клетки с помощью люминесцентного анализа меченых флюорохромами антител, методам препаративного и аналитического цинтрифугирования.

Современная цитология из суто морфологической науки смогла развиться в экспериментальную дисциплину, изучающую основные принципы деятельности клетки и, соответственно, основы жизни организмов.

При диагностике заболеваний человека и животных существенное значение имеют именно цитологические исследования.

Благодаря разработке Б.Гердоном методов пересадки ядер в клетки, соматической гибридизации клеток Х. Харрисом, Дж.Барски и Б. Эфрусси стало возможным изучение закономерностей реактивации генов, определение локализации многих генов в хромосомах человека.

Стало также возможным приблизиться к решению ряда практических заданий медицины и народного хозяйства (создание новых сельскохозяйственных культур). Методом гибридизации клеток создано технологию получения стационарных антител гибридных клеток, вырабатывающих специфические антитела (моноклональные антитела).

Они используются с целью определения ряда теоретических вопросов микробиологии, иммунологии, и вирусологии.

Замечание 1

Сейчас стали примененять эти клоны для усовершенствования диагностики и лечения заболеваний человека.

Цитологический анализ клеток больных (часто после их культивирования вне организма) важен при диагностировании некоторых наследственных болезней (пигментная ксеродерма, гликогенозы) и изучения их природы.

В перспективе предвидится так же использование цитологических достижений при лечении генетических заболеваний человека, профилактике наследственной патологии, созданияи новых высокопродуктивных штаммов бактерий, повышении урожайности растений.

Благодаря многогранности проблем исследования клетки, специфике и разнообразию методов её изучения, в цитологии сформировались шесть основных направлений:

  • Цитоморфологии, которая изучает особенности структурной организации клетки, основными методами исследования которой являются различные способы микроскопии, как фиксированной (светооптическая, электронная, поляризационная), так и живой клетки (темнопольний конденсор, фазово-контрастная и люминесцентная микроскопия);
  • Цитофизиологии, которая изучает жизнедеятельность клетки как единой живой системы, а также функционирование и взаимодействие её внутренних структур; для решения этих заданий используют различные экспериментальные приёмы вместе с методами культуры клеток и тканей, микрокиносъёмки;*
  • Цитохимии, которая исследует молекулярную организацию клетки и химические изменения во время процессов обмена веществ и функционирования клетк. Проводят цитохимические исследования светомикроскопическим и электронно-микроскопическим методами, методами ультрафиолетовой и интерференционной микроскопии, цитофотометрии, фракционного центрифугирования.
  • Цитогенетики, которая изучает функциональную и структурную и организацию хромосом эукариотов;
  • Цитоэкологии, которая исследует реакции клетки на влияние факторов окружающей среды и механизмы адаптации к ним;
  • Цитопатологии, которая изучает патологические процессы в клетке.*

Наряду с традиционными направлениями цитологии развиваются и новые, такие как цитопатология вирусов, ультраструктурная патология клеток, цитофармакология, онкологическая цитология и др.

Цитология преподаётся как самостоятельный раздел в курсе гистологии и биологии в медицинских и других высших учебных заведениях.

История развития учения о клетке

Цитология относится к молодым биологическим наукам, её возраст – около 100 лет. А возраст термина «клетка» – более 300 лет.

История изучения клетки связана с именами таких учёных, как Роберт Гук (впервые применил микроскоп для исследования тканей и на срезе пробки и сердцевины бузины увидел ячейки, которые назвал клетками), Антони ван Левенгук (впервые увидел клетки при увеличении в 270 раз и открыл одноклеточные организмы), Матиас Шлейден и Теодор Шванн (они стали творцами клеточной теории).

Клеточная теория получила дальнейшее развитие в работах учёных второй половины ХІХ столетия. Было открыто деление клетки и сформулировано положение о том, что каждая новая клетка образуется от такой же начальной клетки в результате её деления (Рудольф Вирхов, 1858).

Академик Российской Академии наук Карл Бер открыл яйцеклетку млекопитающих и установил, что все многочисленные организмы начинают своё развитие из одной клетки и этой клеткой является зигота. Открытие К.

Бера показало, что клетка – не только единица строения, но и единица развития всех живых организмов.

После работ Роберта Гука микроскоп начали широко использовать для научных исследований в биологии.

Исторически развитие цитологии тесно связано с созданием микроскопа и его усовершенствованием, развитием гистологических методов исследования.

В ХVII ст. наблюдения Р. Гука подтвердились и были развиты М. Мальпиги, Н. Грю, А. Левенгуком.

В процессе научно-технической революции середины ХХ ст. цитология бурно развивалась и ряд её представлений были пересмотрены.

Электронная микроскопия дала возможность изучить строение и много в чём раскрыть функции уже известных ранеее органоидов клетки. Связаны эти открытия с именами К. Портера, Дж. Пелейда, Х. Риса, В. Бернхарда, К. де Дюва и других известных учёных.

В результате изучения ультраструктуры клетки весь живой органический мир был разделён на прокариот и эукариот. Исследования молекулярной биологии показали единство для всех организмов (включая вирусы) механизмов синтеза белка и генетического кода.

Замечание 2

Изучение химической организации клетки привело к заключению, что в основе её жизни лежат именно химические процессы, что клетки всех организмов подобны по химическому составу, у них однотипно происходят основные процессы обмена веществ. Единство всего органического мира подтвердили данные о подобности химического состава клеток.

Источник: https://spravochnick.ru/biologiya/citologiya_-_nauka_o_stroenii_i_funkcii_kletok/

Основной метод цитологии изучающий жизнедеятельность клетки

Основной метод цитологии изучающий жизнедеятельность клетки

Роберт Гук, занимавшийся изучением строения растительной клетки, считал, что живыми являются их стенки, а не содержимое. Через 10 лет итальянский врач Марчелло Мальпиги предложил первую клеточную теорию строения растений.

Он считал, что все органы растений образованы клетками, в которых есть цитоплазма. Энтони ван Левенгук рассмотрел эритроциты крови и сперматозоиды человека, а известный зоолог из Франции Жан Батист Ламарк допустил, что все живые организмы строятся из клеток.

Положения современной клеточной теории ввели немецкие биологи Теодор Шванн и Матиас Шлейден, а дополнил ее российский патологоанатом Рудольф Вирхов. Так зародилась новая наука о клетках, и случилось это в 1839 году, когда на вооружении биологов были только световые микроскопы и довольно скудный арсенал знаний.

Цитология относится к молодым биологическим наукам, её возраст – около 100 лет. А возраст термина «клетка» — более 300 лет.

История изучения клетки связана с именами таких учёных, как Роберт Гук (впервые применил микроскоп для исследования тканей и на срезе пробки и сердцевины бузины увидел ячейки, которые назвал клетками), Антони ван Левенгук (впервые увидел клетки при увеличении в 270 раз и открыл одноклеточные организмы), Матиас Шлейден и Теодор Шванн (они стали творцами клеточной теории).

Клеточная теория получила дальнейшее развитие в работах учёных второй половины ХІХ столетия. Было открыто деление клетки и сформулировано положение о том, что каждая новая клетка образуется от такой же начальной клетки в результате её деления (Рудольф Вирхов, 1858).

Академик Российской Академии наук Карл Бер открыл яйцеклетку млекопитающих и установил, что все многочисленные организмы начинают своё развитие из одной клетки и этой клеткой является зигота. Открытие К.

После работ Роберта Гука микроскоп начали широко использовать для научных исследований в биологии.

Исторически развитие цитологии тесно связано с созданием микроскопа и его усовершенствованием, развитием гистологических методов исследования.

В ХVII ст. наблюдения Р. Гука подтвердились и были развиты М. Мальпиги, Н. Грю, А. Левенгуком.

В процессе научно-технической революции середины ХХ ст. цитология бурно развивалась и ряд её представлений были пересмотрены.

Электронная микроскопия дала возможность изучить строение и много в чём раскрыть функции уже известных ранеее органоидов клетки. Связаны эти открытия с именами К. Портера, Дж. Пелейда, Х. Риса, В. Бернхарда, К. де Дюва и других известных учёных.

В результате изучения ультраструктуры клетки весь живой органический мир был разделён на прокариот и эукариот. Исследования молекулярной биологии показали единство для всех организмов (включая вирусы) механизмов синтеза белка и генетического кода.

Какая наука занимается изучением жизнедеятельности клеток?

Задача биолога-цитолога – установить строение клетки, ее структурных компонентов, законов жизнедеятельности и нормального функционирования. Наука цитология, от греческого слова «cytoc» – «клетка», кроме перечисленного, изучает появление и смерть клеток, процессы из размножения.

На границе этих знаний находится патоморфология клеток, клиническая цитология – науки, которые описывают и изучают патологические состояния клетки. Биохимия и биофизика клетки изучает основы процессов ее жизнедеятельности.

А генетика клетки изучает законы наследования и перераспределения материала наследственности на клеточном уровне. И каждая из перечисленных отраслей биологии имеет свой план и методы изучения жизнедеятельности клетки.

Первые микроскопы

Исторически первыми приборами для изучения клеток были световые микроскопы. Принцип их работы заключается в том, что через прозрачный объект проходят лучи света, которые после этого попадают в систему увеличительных линз.

Современные световые микроскопы дают возможность увеличения объекта наблюдения в 2 тысячи раз. Но возможности его ограничиваются разрешающей способностью – минимальным расстоянием между двумя точками, когда их еще видно как отдельные объекты.

Границы этой способности – физические особенности природы света, длина световой волны. Лучший современный световой микроскоп позволяет увидеть структуры с расстоянием между элементами в 0,25 микрометра.

Для сравнения: размер бактерии кишечной палочки – 2 микрометра. Таким образом, световая микроскопия позволяет изучать одноклеточные организмы, строение тканей и клеток, но внутреннее строение органелл клетки, мелких бактерий и вирусов недоступны данному методу изучения жизнедеятельности клеток.

Но определенные преимущества у данного метода есть – он позволяет вести прижизненное изучение биологического объекта. Кроме того, различные методики окрашивания препаратов дают четкие картинки и широко используются в клинической диагностике.

Границу разрешительной способности можно перешагнуть, если использовать не свет для получения изображения, а электроны. И такой шаг был сделан в 1931 году, кода был выдан первый патент на просвечивающий электронный микроскоп.

В данном устройстве тоже есть линзы, но они не стеклянные, а магнитные. Они фокусируют электроны и выводят изображение на экран. Электронная микроскопия как метод изучения жизнедеятельности клетки позволяет увеличить объект в миллион раз, а граница разрешающей способности увеличивается до 0,5 нанометров.

Современные электронные микроскопы бывают просвечивающими и растровыми (сканирующими). Но какого типа ни был бы увеличительный прибор, у него есть свои недостатки.

Несмотря на очень высокую четкость изображения, такие приборы не позволяют изучать биологические объекты при жизни, и подготовка образца для такого исследования – очень долгий и дорогостоящий процесс.

Разобрать клетку на части

Для изучения строения отдельных структурных компонентов клетки важно выделить их в чистом виде, что стало вполне реальным в начале 40-х годов прошлого века.

Такое разделение на фракции возможно при использовании дифференционного центрифугирования как одного из методов изучения жизнедеятельности клетки. План применения этого метода состоит из двух этапов: разрушение клетки и разделение компонентов на фракции, различные по своему молекулярному весу.

В центрифуге, за счет центробежных сил, более тяжелые компоненты оседают первыми. Так, при высоких скоростях центрифугирования, ядра клеток оседают первыми, затем – митохондрии и другие органеллы, последними оседают рибосомы.

Отделенные органеллы легко изучать под микроскопом. При осторожном применении данного метода изучения жизнедеятельности клетки план строения органелл сохраняется, и появляется возможность установить молекулярный механизм некоторых процессов.

Заморозим и изучим

Довольно новым в биологии методом изучения клетки является замораживание-скалывание. При обычной заморозке в клетках появляются кристаллы льда, которые искажают структуру.

Но при быстрой заморозке жидким азотом (температура минус 196 градусов по Цельсию) вода не переходит в кристаллическую форму и клетки не деформируются.

Затем кусочки образца раскалывают, избытки льда удаляют, напыляют слой тяжелых металлов. Затем саму ткань образца растворяют, а оттиск оставляют и в результате получают эффект теней.

Изображение в микроскопе получается объемным. Именно благодаря использованию такого метода изучения жизнедеятельности клеток удалось изучить строение мембран.

Метод культуры

Какие методы используют для изучения клеток современные ученые? Вот один из самых необычных и невероятно перспективных – выращивание на специальных средах.

Этот метод используется, когда необходимо много одинаковых клеток для изучения. Причем живых. Тогда готовится очень сложная среда (13 аминокислот, 8 витаминов, глюкоза, антибиотики и минеральные соли), на которую помещают культуру клеток.

Известно, что клетки в культуре погибают после определенного числа делений. Но в культуре могут появиться мутантные виды, которые способны к бесконечному размножению.

Именно их и выводят в чистую линию, которая называется перевиваемой. Самая известная такая линия — линия HeLa – клетки раковой опухоли шейки матки. Они были выведены в 1952 году.

Микрохирургия в клетках

Это один из самых интересных методов изучения клеток. Микроманипуляторами (очень маленькие крючки, пипетки, иглы, капилляры) клетка разрезается, и в нее можно как что-либо добавить, так что-либо и изъять.

За всем процессом специалист следит в микроскоп. Именно таким способом можно пересадить ядро одной клетки в другую и доказать, что именно оно является видоопределяющим фактором (такие опыты были проведены с амебами).

Этот способ открывает возможности введения в живые клетки антител и специальных белков, которые значительно влияют на жизнедеятельность. Метод сегодня активно развивается, широко применяется он в генной инженерии – отдельном направлении биологии, направленном на манипуляции с генами организмов и выращивание искусственных белков, тканей и целых организмов.

Нанороботы в цитологии

Американскими биологами уже создан нанозонд, который может мониторить электрохимические и биохимические процессы в живых клетках. Экспериментальная модель настолько мала, что способна поместиться в ядре или даже митохондрии.

А вот в Швеции разработан наносенсор, который измеряет рН в цитоплазме клетки и способен отличить даже отдельные молекулы химических веществ в разных частях клетки.

В Кембриджском университете ученые спроектировали нанодвигатель, способный доставить внутрь клетки что угодно – от молекул питательных веществ до антител.

И напоследок. Датчики здоровья, молекулярные ассемблеры, нанозонды и устройства хранения информации – это уже не будущее технологий, а настоящее. Американский изобретатель и футуролог Рэй Курцвейл утверждает, что с помощью нанотехнологий биологическая нервная система человека может быть подключена к Интернету уже в 2030 году.

Все живые организмы состоят из клеток – из одной (одноклеточные организмы) или многих (многоклеточные).

Предметом цитологии является клетка многоклеточных грибов, растений и животных, а также одноклеточные организмы (бактерии, одноклеточные грибы и водоросли, простейшие).

Цитология занимается изучением строения, химического состава и функций клеток, функций внутриклеточных структур, размножения и развития клеток, приспособление клеток к условиям внешней среды.

Современная цитология – комплексная наука. Она очень тесно связаны с другими биологическими науками: физиологией, ботаникой, зоологией, физиологией, эволюционным учением.

Существует общая и частная цитология.

Предметом исследования общей цитологии являются общие для большинства клеток элементы: их структура, функции, процессы метаболизма, реакция на повреждения и патологические изменения, приспособление к окружающим условиям.

В частной цитологии исследует особенности каждого типа клеток в зависимости от их специализации (многоклеточные организмы) или эволюционной адаптации к внешней среде (бактерии).

Чёткие грани между цитологией, биохимией, биологией развития, молекулярной биологией и молекулярной биофизикой стёрлись благодаря новым методам изучения компонентов клетки, развитию и усовершенствованию исследований цитохимии, особенно ферментов, использованию при изучении процессов синтеза макромолекул клетки радиоактивных изотопов, внедрению методов электронной цитохимии, применению для изучения локализации индивидуальных белков клетки с помощью люминесцентного анализа меченых флюорохромами антител, методам препаративного и аналитического цинтрифугирования.

Современная цитология из суто морфологической науки смогла развиться в экспериментальную дисциплину, изучающую основные принципы деятельности клетки и, соответственно, основы жизни организмов.

При диагностике заболеваний человека и животных существенное значение имеют именно цитологические исследования.

Благодаря разработке Б.Гердоном методов пересадки ядер в клетки, соматической гибридизации клеток Х. Харрисом, Дж.Барски и Б. Эфрусси стало возможным изучение закономерностей реактивации генов, определение локализации многих генов в хромосомах человека.

Стало также возможным приблизиться к решению ряда практических заданий медицины и народного хозяйства (создание новых сельскохозяйственных культур). Методом гибридизации клеток создано технологию получения стационарных антител гибридных клеток, вырабатывающих специфические антитела (моноклональные антитела).

  • Цитоморфологии, которая изучает особенности структурной организации клетки, основными методами исследования которой являются различные способы микроскопии, как фиксированной (светооптическая, электронная, поляризационная), так и живой клетки (темнопольний конденсор, фазово-контрастная и люминесцентная микроскопия);
  • Цитофизиологии, которая изучает жизнедеятельность клетки как единой живой системы, а также функционирование и взаимодействие её внутренних структур; для решения этих заданий используют различные экспериментальные приёмы вместе с методами культуры клеток и тканей, микрокиносъёмки;*
  • Цитохимии, которая исследует молекулярную организацию клетки и химические изменения во время процессов обмена веществ и функционирования клетк. Проводят цитохимические исследования светомикроскопическим и электронно-микроскопическим методами, методами ультрафиолетовой и интерференционной микроскопии, цитофотометрии, фракционного центрифугирования.
  • Цитогенетики, которая изучает функциональную и структурную и организацию хромосом эукариотов;
  • Цитоэкологии, которая исследует реакции клетки на влияние факторов окружающей среды и механизмы адаптации к ним;
  • Цитопатологии, которая изучает патологические процессы в клетке.*

Наряду с традиционными направлениями цитологии развиваются и новые, такие как цитопатология вирусов, ультраструктурная патология клеток, цитофармакология, онкологическая цитология и др.

Цитология преподаётся как самостоятельный раздел в курсе гистологии и биологии в медицинских и других высших учебных заведениях.

Источник: https://kono-pizza.ru/tsitologiya/osnovnoy-metod-tsitologii-izuchayushchiy-zhiznedeyatelnost-kletki/

Консультация доктора
Добавить комментарий