Примеры использования экспериментального метода в цитологии

Методы цитологии. Клеточная теория. урок. Биология 10 Класс

Примеры использования экспериментального метода в цитологии

Тема: Основы цитологии

Урок: Методы цитологии. Клеточная теория

Для изучения жизнедеятельности и строения клетки используют различные подходы или методы исследования.

Разрешающая способность человеческого глаза составляет 100 микрометров (микрон).

То есть, если вы начертите две линии на расстоянии 100 микрон друг от друга и посмотрите на них, то эти две линии сольются в одну, а если вы поставите две точки на расстоянии 100 микрометров, эти две точки покажутся вам одной точкой.

Размеры клеток и клеточных компонентов определяются микронами или долями микрон. Для того чтобы увидеть структуру такого масштаба и размера, необходимы оптические приборы.

Исторически сложилось, что первым оптическим прибором был световой микроскоп (рис. 1).

Рис. 1. Световой микроскоп

Лучший световой микроскоп имеет разрешающую способность около 0,2 микрометров, то есть 200 нанометров, что примерно в 500 раз улучшает возможности человеческого глаза.

Первые микроскопы были созданы в конце XVI в – начале XVII века, а первым человеком, который использовал микроскоп для изучения живых объектов, был Роберт Гук, это случилось в 1665 году.

Он изучал растительные ткани и показал, что пробка и другие растительные ткани состоят из ячеек, разделенных перегородками, эти ячейки он назвал клетками.

Световые микроскопы очень широко применяются и в настоящее время, однако они имеют ряд недостатков. Одни из них заключаются в том, что с помощью светового микроскопа невозможно увидеть объекты, размеры которых меньше длины световой волны – 400-800 нанометров, поскольку световая волна не может быть отражена таким объектом, а огибает его.

В начале 30-х годов XX века был создан электронный микроскоп (рис. 2), который давал биологам возможность увидеть объекты размером 0,5 нанометров.

Почему это произошло? Потому что физики предложили биологам использовать не световой луч, а поток электронов, которые могли уже отражаться от более мелких объектов.

Рис. 2. Сравнительная характеристика светового (сверху) и электронного (снизу) микроскопа

На рисунке 2 представлены рабочие диапазоны светового и электронного микроскопов. Как мы видим, клеточные органеллы и вирусы можно увидеть только с помощью электронного микроскопа.

В сущности, принцип действия электронного микроскопа такой же, как и у светового, в котором пучок световых лучей направляется линзой конденсатора через образец, а изображение увеличивается с помощью системы линз. В электронном микроскопе оператор сидит у пульта управления лицом к колонне, по которой проходит пучок электронов (рис. 3).

Электронный микроскоп перевернут вверх дном по сравнению со световым микроскопом. Здесь у электронного микроскопа источник электронов находится в верхней части колоны, а сам образец – внизу.

Рис. 3. Принцип работы светового (слева) и электронного (справа) микроскопа

На вольфрамовую нить накала, находящуюся в верхней части колонны, подается высокое напряжение, и нить накала излучает пучок электронов, чтоб сфокусировать эти электроны, необходимы электромагниты.

Внутри колонны создается глубокий вакуум, чтобы сократить до минимума рассеивание электронов. В трансмиссионном просвечивающем микроскопе электроны проходят через образец, поэтому сам образец должен быть очень тонким, иначе электроны могут быть поглощены этим образцом, или рассеются. Пройдя через образец, электроны фокусируются добавочными электромагнитными линзами.

Электроны невидимы для человеческого глаза, поэтому они направляются на флуоресцентный экран, который воспроизводит видимые изображения или на фотопленку. Так можно получить постоянный фотоснимок – электронную микрофотографию.

Для того что бы получить объемные изображения предметов, используют сканирующий электронный микроскоп (рис. 4).

Рис. 4. Объемные изображения пыльцы растений (справа), полученные при помощи сканирующего электронного микроскопа (слева)

В нем точно сфокусированный пучок электронов движется взад и вперед по поверхности образца, а отраженные от поверхности электроны собираются и формируют изображение, наподобие того, которое возникает на экране телевизора.

С помощью электронного микроскопа можно увидеть только неживые объекты. Процессы, происходящие в клетке, то есть живую клетку, можно наблюдать в мощный световой микроскоп при замедленной кинофотосъёмке.

Если требуется проследить за судьбой какого-либо химического соединения в клетке, то можно заменить один из атомов в его молекуле на радиоактивный изотоп. Тогда эта молекула будет иметь радиоактивную метку, по которой ее можно обнаружить с помощью счетчика радиоактивных частиц или по способности засвечивать фотопленку.

Для выделения и изучения отдельных органоидов клетки используется метод ультрацентрифугирования: разрушенные клетки в пробирке вращаются с очень большой скоростью в центрифугах.

Так как разные составные части клеток имеют различные массу, размеры и плотность, то они под действием центробежной силы оседают на дно с разными скоростями.

Таким образом, изучают митохондрии, рибосомы и другие органеллы.

Рис. 5. Создатели клеточной теории М. Шлейден и Т. Шванн

В XVIII – XIX веках основным орудием исследования живых объектов в руках биологов был световой микроскоп. В 1838 году вышла книга Маттиаса Шлейдена (рис.

 5) «Материалы к филогенезу», в которой он показал, что все растительные ткани состоят из клеток и рассуждал о вопросе происхождения клеток в живых организмах, непосредственно в растительных организмах. Ровно через год в 1839 году Теодор Шванн (рис.

 5) опубликовал свою книгу «Микроскопические исследования о соответствии в структуре, и росте животных и растений» в которой и были изложены первые версии клеточной теории.

Вот основные постулаты клеточной теории:

1. Все живые существа состоят из клеток.

2. Все клетки имеют сходное строение, химический состав и общие принципы жизнедеятельности.

3. Каждая клетка самостоятельна: деятельность организма является суммой процессов жизнедеятельности составляющих их частей.

Несмотря на всю прогрессивность клеточной теории, Шванн и Шлейден ошибочно полагали, что новые клетки появляются из внеклеточного вещества, поэтому существенным дополнением клеточной теории был принцип Рудольфа Вирхова (каждая клетка из клетки).

Позднее Вальтер Флеминг описал процесс деления клетки – митоз. А Оскар Гертвиг и Эдуард Страсбургер независимо друг от друга, на основании экспериментов с одноклеточными водорослями, пришли к выводу, что наследственная информация клетки заключена в ядре.

Таким образом, работами многих исследователей была создана современная клеточная теория, которая имеет следующие положения:

1. Клетка является универсальной структурной и функциональной единицей живого.

2. Все клетки имеют сходное строение, химический состав и общие принципы жизнедеятельности.

3. Клетки образуются только при делении предшествующих им клеток.

4. Клетки способны к самостоятельной жизнедеятельности, но в многоклеточных организмах их работа скоординирована, и организм представляет собой целостную систему.

Микроскоп и время. История создания микроскопа не совсем ясна, известно, что он появился в конце XVI – в начале XVII века, и одним из мастеров, который сконструировал микроскоп, был Захарий Янсен, очковый мастер (рис. 6).

Рис. 6. Один из первых изготовителей микроскопов, З. Янсен, и его творение

Долгое время он использовался как игрушка, и даже Г. Галилей в 1619 году писал, что любопытно смотреть через микроскоп на муху размером в теленка, и только Роберт Гук в 1665 г. стал использовать микроскоп в научных исследованиях. Он рассматривал растительные ткани и клетки пробки, и таким образом открыл клетки у растений.

Р. Гук усовершенствовал микроскоп (недостатком первых микроскопов было плохое освещение). С этой целью Гук сделал приспособление, состоящее из сферы, наполненной водой, или из плосковыпуклой линзы, фокусировавшей солнечный свет. А в вечернее время Гук использовал светильник, который был дополнительным источником освещения.

Домашнее задание

1. Что такое микроскоп?

2. Чем световой микроскоп отличается от электронного микроскопа?

3. Опишите метод ультрацентрифугирования.

4. Что такое радиоактивные маркеры? Как они используются?

5. Перечислите ученых, работы которых способствовали возникновению и развитию клеточной теории.

6. Перечислите постулаты клеточной теории.

7. Обсудите с друзьями и родными, каким образом из одной клетки развивается целый организм. Как можно влиять на этот процесс?

Дополнительные рекомендованные ссылки на ресурсы сети Интернет

1. Википедия (Источник).

2. Википедия (Источник).

3. Википедия (Источник).

4. Википедия (Источник).

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. – 2-е изд., переработанное. – Вентана-Граф, 2010. – 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. – 11-е изд., стереотип. – М.: Просвещение, 2012. – 304 с.

4. Биология 11 класс. Общая биология. Профильный уровень / В. Б. Захаров, С. Г. Мамонтов, Н. И. Сонин и др. – 5-е изд., стереотип. – Дрофа, 2010. – 388 с.

5. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. – 6-е изд., доп. – Дрофа, 2010. – 384 с.

Источник: https://interneturok.ru/lesson/biology/10-klass/bosnovy-citologii-b/metody-tsitologii-kletochnaya-teoriya

Методы биологических наук в заданиях ЕГЭ

Примеры использования экспериментального метода в цитологии

   Каждая наука, в том числе и биология, пользуется определенными методами исследования   Метод – это путь исследования, который проходит ученый, решая какую-либо научную задачу, проблему.
   К основным методам науки относятся следующие:

  1. Описательный метод – самый старый метод, не утративший своего значения и в настоящее время. Заключается в сборе фактического материала и его описании. Этот метод утвердился в биологии в XVIII веке. Этот метод используется в настоящее время в зоологии, ботанике, микологии, экологии, этологии.

2.  Наблюдение – метод, с помощью которого исследователь собирает информацию об объекте в естественных или искусственных условиях. Наблюдение протекает без вмешательства исследователя в его ход. Наблюдать можно визуально, например за поведением животных.

Можно наблюдать с помощью приборов за изменениями, происходящими в живых объектах: например, при снятии кардиограммы в течение суток, при замерах веса теленка в течение месяца. Наблюдать можно за сезонными изменениями в природе, за линькой животных и т. д. Выводы, сделанные наблюдателем, проверяются либо повторными наблюдениями, либо экспериментально.

Методнаблюдения лежит в основе описательногометода.

3.Сравнительный метод – заключается в сравнении изучаемых организмов, их структур и функций между собой с целью выявления сходств и различий.

Сравнение, даёт возможность найти закономерности, общие для разных явлений; Этот метод утвердился в биологии в XVIII в. и оказался очень плодотворным в решении многих крупнейших проблем. Благодаря этому методу были заложены основы систематики, создана клеточная теория.

Применение этого метода в анатомии, эмбриологии, палеонтологии способствовало утверждению в биологии эволюционной теории развития.

4.   Исторический метод – на основе данных о современном органическом мире и его прошлом познаются процессы развития живой природы.

Устанавливаются взаимосвязи между фактами, процессами, явлениями, происходившими на протяжении исторически длительного времени (несколько миллиардов лет).

Он выясняет закономерности появления и развития организмов. Эволюционное учение развивалось в значительной мере благодаря этому методу.

5. Эксперимент (опыт) – изучение свойств биологических объектов в контролируемых условиях. Эксперимент – это получение новых знаний с помощью поставленного опыта. Это метод, с помощью которого проверяют результаты наблюдений, выдвинутые предположения – гипотезы, в условиях, которые, точно необходимы для изучения конкретных явлений.

Экспериментальный метод дает нам возможность изолированно изучать природные явления, а, также, разрешает добиться их повторения, если соблюдать одинаковые условия. Этот метод гораздо глубже других методов позволяет нам постичь суть природных явлений. Широко использоваться этот метод начали с 19 века.

Классическим образцом экспериментального метода являются работы И.Сеченова и И.Павлова («Наблюдение собирает то, что ему предлагает природа, опыт же берёт у природы то, что он хочет») по физиологии нервной и Г. Менделя по изучению наследования признаков.

Примерами экспериментов являются скрещивания животных или растений с целью получения нового сорта или породы, проверка нового лекарства, выявление роли какого-либо органоида клетки и т. д

 6. Моделированиеимитирование процессов, недоступных для непосредственного наблюдения или экспериментального воспроизведения.

Mетод, при котором создается некий образ объекта, модель, с помощью которой ученые получают необходимые сведения об объекте, как правило изучаются явления которые нельзя воспроизвести экспериментально.

Например: последствия атомной войны или последствия строительства плотины и водохранилища в данной местности, модель динамики численности хищник-жертва (математическая модель Лотки-Вольтерры).

При установлении структуры молекулы ДНК Джеймс Уотсон и Френсис Крик создали из пластмассовых элементов модель – двойную спираль ДНК, отвечающую данным рентгенологических и биохимических исследований. Эта модель вполне удовлетворяла требованиям, предъявляемым к ДНК.

7.Инструментальные методы – микроскопия (световая и электронная), центрифугирование(   Центрифугирование – разделение смесей на составные части под действием центробежной силы. Применяется при разделении органоидов клетки(позволяет избирательно выделять и изучать органоиды клетки), легкие и тяжелые фракции органических веществ и т. д.), электроэнцефалография.

Методы генетики человека.

Для генетических исследований человек является неудобным объектом, т.к. 1.Невозможно экспериментальное скрещивание 2.Большое количество хромосом,3. Поздно наступает половая зрелость.4.Малое число потомков в каждой семье, 5.Невозможно уравнивание условий жизни для потомства.

  1. Генеалогический метод – составление родословных. После составления родословной проводится её анализ с целью установления характера наследования изучаемого признака.

    Использование метода возможно если известны прямые родственники – предки обладателя наследственного признака( пробанда) по материнской отцовской линиям в ряду поколений или потомки пробанда также в нескольких поколениях.

    После составления родословной проводится её анализ с целью установления характера изучаемого признака. Благодаря этому методу были определены типы наследования многих признаков у человека.

    Так, по аутосомно-доминантному типу наследуется полидактилия брахидактилия (короткопалость), веснушки, раннее облысение, катаракта глаза. Целый ряд признаков наследуется сцепленно с полом-X- гемофилия, дальтонизм. Y- сцепленное – перепончатость пальцев ног.

    Использование этого метода показало, что при родственном браке, по сравнению с неродственным, значительно возрастает вероятность появления уродств, мертворождений, т.к в родственных браках рецессивные гены чаще переходят в гомозиготное состояние и в рез. развиваются те или иные аномалии. Например наследование гемофилии в царских домах Европы передавшейся от королевы Англии Виктории.

  2. Близнецовый метод. Чаще используют монозиготных (однояйцевых) близнецов. Наблюдения за монозиготными близнецами дают материал для выяснения роли: 1. наследственности (нарушение внутриутробного развития) и 2.

    среды в развитии признаков. Причём под внешней средой понимают не только физические факторы, но и социальные условия.

    Благодаря близнецовому методу, была выяснена наследственная предрасположенность к шизофрении, эпилепсии, сахарному диабету.

  3. Цитогенетический (цитологический) метод основан на изучении хромосом человека в норме и при патологии под микроскопом. Может изменяться число хромосом и их структура. Материалом для кариотипического анализа чаще всего являются лимфоциты крови.

    Лимфоциты культивируются в питательной среде, делятся митозом. Затем в культуру клеток добавляют колхицин, который останавливает митоз на уровне метафазы, когда хромосомы наиболее конденсированы.

    Выявляются хромосомные и геномные нарушения(синдром тернера-Шерешевского-45 хромосом, синдром Клайнфельтера-47 хромосом, синдром Дауна- 47(21.21.21.)

  4. Биохимический метод   – исследование химических процессов, происходящих в организме, позволяет обнаружить нарушения в обмене веществ, вызванные изменением генов и, как следствие изменение активности различных ферментов. Наследственные болезни обмена веществ подразделяются на болезни углеводного обмена ( сахарный диабет), обмена аминокислот (фенилкетонурия-блокируется превращение а.к. фенилаланин в тирозин), липидов, минералов.

Тесты

А 
   А1. Биология как наука изучает   1) общие признаки строения растений и животных   2) взаимосвязь живой и неживой природы   3) процессы, происходящие в живых системах   4) происхождение жизни на Земле   А2. И.П.

Павлов в своих работах по пищеварению применял метод исследования:   1) исторический 3) экспериментальный   2) описательный 4) биохимический   А4. Эмбриология изучает   1) развитие организма от зиготы до рождения   2) строение и функции яйцеклетки   3) послеродовое развитие человека   4) развитие организма от рождения до смерти   А5.

Количество и форма хромосом в клетке устанавливается методом исследования   1) биохимическим 3) центрифугированием   2) цитологическим 4) сравнительным   А6. Селекция как наука решает задачи   1) создания новых сортов растений и пород животных   2) сохранения биосферы   3) создания агроценозов   4) создания новых удобрений   А7.

Закономерности наследования признаков у человека устанавливаются методом   1) экспериментальным 3) генеалогическим   2) гибридологическим 4) наблюдения   А8. Специальность ученого, изучающего тонкие структуры хромосом, называется:   1) селекционер 3) морфолог   2) цитогенетик 4) эмбриолог   А9.

Систематика – это наука, занимающаяся   1) изучением внешнего строения организмов   2) изучением функций организма   3) выявлением связей между организмами   4) классификацией организмов //– Часть В –//      Часть С    С1.

Французский ученый Луи Пастер прославился как «спаситель человечества», благодаря созданию вакцин против инфекционных заболеваний, в том числе таких как, бешенство, сибирская язва и др. Предложите гипотезы, которые он мог выдвинуть. Каким из методов исследования он доказывал свою правоту?

Источник: https://infourok.ru/metody_biologicheskih_nauk_v_zadaniyah_ege-468967.htm

Методы цитологии

Примеры использования экспериментального метода в цитологии

Строение, ультраструктура и функционирование клеточных органоидов исследуется в настоящее время с помощью следующих основных методов: световой и электронной, темнопольной, фазово-контрастной, поляризационной, люминесцентной микроскопии, используемых для изучения строения, ультраструктуры фиксированных клеток, и дифференциального центрифугирования, позволяющего выделять отдельные органоиды и анализировать их цитохимическими, биохимическими, биофизическими, и другими методами.

Световая микроскопия.

Принцип метода состоит в том, что пучок света, пройдя через объект, попадает в систему линз объектива, и строит первичное изображение, которое увеличивается с помощью линз окуляра. оптическая часть микроскопа, определяющая его основные возможности, – объектив.

В современных микроскопах объективы сменные, что позволяют изучать клетки при разных увеличениях. Главной характеристикой микроскопа как оптической системы является разрешающая способность, т.е. способность давать раздельное изображение двух близких друг к другу объектов.

Изображения, даваемые объективом, можно увеличить во много раз, применяя сильный окуляр или, например проекции на экран (до 105 раз). Разрешающая способность светового микроскопа ограничивается длиной волны света: чем меньше длина волны, тем выше разрешающая способность.

Обычно в световых микроскопах используются источники освещения в видимой области спектра (400-700 нм), поэтому максимальное разрешение микроскопа в этом случае может быть не выше 200-350 нм (0,2-0,35 мкм). Если использовать фиолетовый свет (260-280 нм), то можно повысить разрешение до 130 – 140 нм (0,13-0,14 мкм).

Это будет пределом теоретического разрешения светового микроскопа, определяемого волновой природой света.

https://www.youtube.com/watch?v=NIRCkWaysjE

Таким образом, все, что может дать световой микроскоп как вспомогательный прибор к нашему глазу, – это повысить разрешающую способность его примерно в 1000 раз (невооруженный глаз человека имеет разрешающую способность около 0,1 мм, что равно 100 мкм).

Это и есть «полезное» увеличение микроскопа, выше которого мы будем только увеличивать контуры изображения, не открывая в нем новых деталей.

Следовательно, при использовании видимой области света 0,2-0,3 мкм является конечным пределом разрешения светового микроскопа.

Электронная микроскопия.

В принципе электронный микроскоп устроен так же, как и световой, только роль светового пучка выполняет в нем пучок электронов, а фокусируется этот пучок не линзами, а электромагнитами.

Однако для пучка электронов длина волны значительно короче длин волн видимого света, что и обеспечивает более высокую разрешающую способность электронного микроскопа по сравнению со световым микроскопом.

Разрешение у современных электронных микроскопов 0,2-1 нм.

В трансмиссионном электронном микроскопе электроны проходят сквозь объект подобно тому, как в световом микроскопе сквозь него проходит свет. В результате пучок электронов создает изображение объекта на фотографической пластинке.

Одно из главных неудобств электронного микроскопа заключается в том, что в камере должен поддерживаться высокий вакуум, потому что в воздушной среде электроны легко отклоняются и захватываются молекулами газа.

Живая же материя не может существовать в высоком вакууме, так как в этих условиях испаряется вся содержащаяся в ней вода; поэтому при помощи трансмиссионного электронного микроскопа можно исследовать только фиксированный материал.

Кроме того, срезы должны быть очень тонкими, чтобы сквозь них могли проходить электроны.

В сканирующем электронном микроскопе электроны отражаются от поверхности объекта и создают изображение при движении в обратном направлении.

Предел разрешения у сканирующего микроскопа ниже, чем у трансмиссионного, и ему требуется не столь высокий вакуум.

Благодаря этому с помощью сканирующего электронного микроскопа можно проводить прижизненные исследования некоторых организмов с достаточно твердыми покровами.

Он позволяет также получать превосходные фотографии, воспроизводящие в мельчайших деталях поверхности некоторых живых существ. Чтобы усилить контрастность конечного изображения, почти все объекты окрашивают.

В световой микроскопии используют красители, а для трансмиссионного электронного микроскопа – фиксаторы, содержащие тяжелые металлы (например, четырехокись осмия, перманганат калия, свинец), способные поглощать электроны.

Для сканирующего электронного микроскопа материал часто замораживают, чтобы получить поверхность, покрытую льдом. При этом исключаются потери воды водорастворимых веществ, меньшими являются также химические изменения структур.

При анализе данных, полученных с помощью электронного микроскопа, надо помнить, что этим методом исследуются статические состояния клетки в момент быстрой остановки движения цитоплазмы, вызванной воздействием фиксирующих химических веществ.

Темнопольная микроскопия

Суть его в том, что подобно пылинкам в луче света (эффект Тиндаля) в клетке при боковом освещении светятся мельчайшие частицы (меньше 0,2 мкм), отраженный свет которых попадает в объектив микроскопа. Этот метод успешно применяется при изучении живых клеток.

Метод фазово-контрастной микроскопии основан на том, что отдельные участки прозрачной, в общем, клетки хоть мало, но все же отличаются друг от друга по плотности и по светопреломлению. Проходя через них, свет изменяет свою фазу, однако такое изменение фазы световой волны наш глаз не улавливает, так как он чувствителен только к изменению интенсивности света.

В фазово-контрастном микроскопе в объектив вмонтирована специальная пластинка, проходя через которую луч света испытывает дополнительный сдвиг фазы колебаний. При построении изображения взаимодействуют уже лучи, находящиеся в одной фазе либо в противофазе, но обладающие разной амплитудой; тем самым создается светло-темное контрастное изображение объекта.

С помощью поляризационного микроскопа изучают объекты, обладающие так называемой изотропией, т.е. упорядоченной ориентацией субмикроскопических частиц (волокна веретена деления, миофибриллы и др.). У такого микроскопа перед конденсором помещается поляризатор, который пропускает световые волны с определенной скоростью поляризации.

После препарата и объектива помещается анализатор, который может пропускать свет с этой плоскостью поляризации. Когда между скрещенными призмами будет находиться объект, обладающий двойным лучепреломлением, т.е.

способностью поляризовать свет, он будет виден как светящийся на темном поле. С помощью поляризационного микроскопа можно убедиться, например, в ориентированном расположении мицелл в клеточной стенке растений.

При изучении живых клеток широко используют флуоресцирующие красители и метод флуоресцентной микроскопии.

Суть его заключается в том, что целый ряд веществ обладают способностью светиться (флуоресцировать, люминесцировать) при поглощении ими световой энергии.

Спектр флуоресценции всегда смещен в сторону больших длин волн по отношению к возбуждающему флуоресценцию излучению. Этот принцип позволяет рассматривать флуоресцирующие объекты в зоне коротких волн.

В таких микроскопах применяются фильтры, дающие освещение в сине-фиолетовой области. Существуют ультрафиолетовые люминесцентные микроскопы.

Собственной флуоресценцией обладают некоторые пигменты (хлорофиллы, бактериальные пигменты), витамины (А и В2), гормоны.

Можно применять метод флуоресцентной микроскопии, добавляя живым клеткам флуоресцирующие вещества, которые избирательно связываются с определенными структурами, вызывая их вторичную люминесценцию.

Для изучения клеток органов и тканей животных используют метод клеточных культур. Простой вариант этого метода заключается в том, что в камеру, наполненную питательной средой, помещают небольшой кусочек живой ткани. Через некоторое время на периферии такого кусочка начинается деление и рост клеток.

В другом случае вырезанный кусочек ткани слегка обрабатывают раствором фермента трипсина или хелатона версена, что приводит к его диссоциации, к полному разобщению клеток друг от друга.

Затем такую взвесь отмытых клеток помещают в сосуд с питательной средой, где они опускаются на дно, прикрепляются к стеклу и начинаются размножаться, образуя сначала колонии, а затем сплошной клеточный пласт.

Так растут однослойные клеточные культуры, очень удобные для прижизненных наблюдений. При культивировании вне организма кроме смены среды важно поддерживать и необходимую температуру, и соблюдение стерильности. В культуре можно выращивать и растительные клетки.

Для этого кусочки ткани обрабатываются ферментами, растворяющими клеточные оболочки. Отделившиеся клеточные тела, протопласты, помещают в культуральную среду, где они делятся и образуют зоны размножившихся клеток.

Сейчас метод культивирования клеток вне организма широко используется не только для цитологических, но и генетических, вирусологических и биохимических исследований.

Наблюдения за живыми клетками обычно регистрируются в виде фотографий, сделанных с помощью специальных фотонадсадок к микроскопу. Живую клетку можно снимать и на кинопленку.

Применяя такую ускоренную или замедленную киносъемку (цейтраферная съемка), можно подробно видеть протекание важных процессов, как деление клеток, фагоцитоз, течение цитоплазмы, биение ресничек и т.д.

Несмотря на важность и достаточную простоту витальных наблюдений, большая часть сведений о структуре и свойствах клеток получена на фиксированном материале.

Задачи фиксации – это убить клетку, прекратить активность внутриклеточных ферментов, предотвратить распад клеточных компонентов, а также избежать потери структур и веществ, препятствовать появлению структур, отсутствующих в живой клетке.

В качестве фиксаторов применяют альдегиды и их смеси с другими веществами, спирты, сулема, четырехокись осмия и др. После фиксации объекты подвергают дополнительной обработке – окрашиванию. Для окраски применяют различные натуральные (гематоксилин и кармин и др.) и главным образом синтетические красители.

Но для окрашивания клеток в составе органов необходимо получить их срезы. Срезы до 5 -10 мкм получают на микротоме.

Существует ряд специфических красочных приемов направленных на выявление специфических химических веществ получил название гистохимических или цитохимических. Это собственно цитохимические реакции.

Основные требования, предъявляемые к такого рода реакциям, следующие: специфичность, связывание красителя, неизменность, локализация вещества.

Количество конечного продукта цитохимической реакции можно определить с помощью цитофотометрии.

Основу его составляет определение количества химических веществ по поглощению ими света определенной длины волны (например, при определении количества ДНК на клетку после реакции Фельгена).

Количественную оценку получают не только поглощающие объекты и вещества, но и излучающие.

Разработаны приемы количественной флуорометрии, позволяющие по степени свечения определить содержание веществ, с которыми связываются флуорохромы.

Для выявления белков, отдельных последовательностей нуклеотидов в ДНК или для определения мест локализации РНК-ДНК – гибридных молекул используют метод иммунофлуоресценции.

Для выяснения локализации мест синтеза биополимеров, для определения переноса веществ в клетке, для наблюдения за миграцией или свойствами отдельных клеток широко используют метод авторадиографии – регистрации веществ, меченых изотопами. Например, с помощью этого метода при использовании меченых предшественников РНК было показано, что вся РНК синтезируется только в интерфазном ядре, а наличие цитоплазматической РНК является результатом миграции синтезированных молекул из ядра.

В цитологии применяют различные аналитические и препаративные методы биохимии. В последнем случае можно получить в виде отдельных фракций разнообразные клеточные компоненты и изучать их химию, ультраструктуру и свойства. В настоящее время в виде чистых фракций получают практически любые клеточные органеллы и структуры.

Одним из основных способов выделения клеточных структур является дифференциальное (разделительное) центрифугирование.

Принцип его применения состоит в том, что время для оседания частиц в гомогенате зависит от их размера и плотности: чем больше частица или чем она тяжелее, тем быстрее она осядет на дно пробирки.

Чтобы ускорить этот процесс оседания используют ускорения, создаваемые центрифугой.

При повторном дробном центрифугировании смешанных подфракции можно получить чистые фракции.

В случаях более тонкого разделения фракций используют центрифугирование в градиенте плотности сахарозы, что позволяет хорошо разделить компоненты, даже незначительно отличающиеся друг от друга по удельной массе.

Полученные фракции, прежде чем их анализировать биохимическими способами, необходимо проверить на чистоту с помощью электронного микроскопа.

Контрольные вопросы:

1. Уровни организации живой материи

2. Клеточная теория организации организмов

3. Методы исследования в цитологии

4. Задачи и предмет цитологии

5. Устройство светового микроскопа

6. Устройство электронного микроскопа

7. Техника безопасности при цитологических работах

8. Требования к подготовке биологического материала для цитологического исследования

9. Фиксирующие вещества, механизм действия

10. Цитохимия, требования к материалу и возможности

11. Количественный анализ (морфометрия), требования и возможности

12. Артефакты в цитологии, пути объективизации результатов

Рекомендуемая литература:

1. Заварзин А.А., Харазова А.Д. Основы общей цитологии. – Л., 1982.

2. Ченцов Ю.С. Основы цитологии. – М., 1984.

3. Шубникова Е.А. Функциональная морфология тканей. – М., Изд-во МГУ, 1981.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: https://studopedia.ru/12_57263_metodi-tsitologii.html

Консультация доктора
Добавить комментарий